深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战

作者简介:Java、前端、Python开发多年,做过高程,项目经理,架构师

主要内容:Java项目开发、Python项目开发、大学数据和AI项目开发、单片机项目设计、面试技术整理、最新技术分享

收藏点赞不迷路  关注作者有好处

文末获得源码

循环神经网络(Recurrent Neural Networks,简称RNNs)是一类用于处理序列数据的神经网络。与传统的神经网络(如全连接神经网络或卷积神经网络)不同,RNNs具有记忆能力,能够捕获序列数据中的时间依赖性和模式。这使得RNNs在自然语言处理、语音识别、时间序列预测等领域具有广泛的应用。

一、RNNs的基本结构

RNNs的基本结构包括输入层、隐藏层和输出层。其中,隐藏层是RNNs的核心部分,它通过循环的方式连接,使得每个时间步的隐藏层都能接收上一时间步的隐藏层状态作为输入。这种结构使得RNNs能够捕获序列数据中的时间依赖性。

二、RNNs的工作原理

  1. 输入层:接收当前时间步的输入数据(如一个单词、一个时间点的观测值等)。

  2. 隐藏层:根据当前时间步的输入数据和上一时间步的隐藏层状态,计算当前时间步的隐藏层状态。这个状态包含了从序列开始到当前时间步的所有信息。隐藏层状态的计算通常使用非线性激活函数(如tanh或ReLU)进行。

  3. 输出层:根据当前时间步的隐藏层状态,计算当前时间步的输出。输出层可以是一个简单的全连接层,也可以是更复杂的结构(如softmax层用于分类任务)。

  4. 循环连接:隐藏层的状态通过循环连接传递给下一个时间步的隐藏层。这种循环连接使得RNNs能够捕获序列数据中的时间依赖性。

三、RNNs的变种

由于RNNs在处理长序列时存在梯度消失和梯度爆炸的问题,研究者们提出了许多RNNs的变种来改进这些问题,包括:

<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_469603589

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值