[BZOJ2734][HNOI2012]集合选数-状压DP

本文介绍了一种通过状态压缩动态规划解决集合选数问题的方法。该问题要求在给定正整数n的情况下,找出所有满足特定条件的{1,2,...,n}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

集合选数

Description

《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,…, n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就交给你了。

Input

只有一行,其中有一个正整数 n,30%的数据满足 n≤20。

Output

仅包含一个正整数,表示{1, 2,…, n}有多少个满足上述约束条件 的子集。

Sample Input

4

Sample Output

8

HINT

【样例解释】

有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。

Source

day2


这题的思路很神奇啊……
虽然不是太难想


思路:
考虑列出一张表格:

-----
124816
36122448
9183672144

其中,每一个格子右边的值是它的值的22倍,下面的值则是3倍。
此时,题目等价于从表格中选一些数,满足选了某个数就不能选其下方和左边的数。
由于log2n17,log3n11log2n≤17,log3n≤11,这样的方案可以通过很简单的状压dp统计。

于是,对于左上角放上所有不被223整除的数,分别做状压dp并将方案乘起来,便能得到最终答案!

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N=100009;
const int M=19;
const int K=150000;
const ll md=1e9+1;

ll f[2][K];
bool vis[N];
int n,g[M][M],border[M];

inline ll work(int x)
{
    int h=0;

    for(int i=1,v=x;v<=n;i++,v*=2)
    {
        h=i;vis[v]=1;
        for(int j=1,vj=v;vj<=n;j++,vj*=3)
            border[h]=j,vis[vj]=1;
    }

    f[0][1]=0;
    f[0][0]=border[0]=border[h+1]=1;

    for(int i=1;i<=h+1;i++)
    {
        for(int k=0,ek=1<<border[i];k<ek;k++)
            f[i&1][k]=0;
        for(int j=0,ej=1<<border[i-1];j<ej;j++)
            if(f[i&1^1][j])
                for(int k=0,ek=1<<border[i];k<ek;k++)
                    if(!(j&k) && !(k&(k<<1)))
                        (f[i&1][k]+=f[i&1^1][j])%=md;
    }

    return f[h&1^1][0];
}

int main()
{
    scanf("%d",&n);
    ll ans=1;
    for(int i=1;i<=n;i++)
        if(!vis[i])
            (ans*=work(i))%=md;
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值