基于 BP 神经网络整定的 PID 控制

基于 BP 神经网络整定的 PID 控制 是一种结合了经典 PID 控制和 BP(反向传播)神经网络的自适应控制方法。在这种方法中,神经网络用于在线调整 PID 控制器的参数(比例增益 KpK_pKp​,积分增益 KiK_iKi​ 和微分增益 KdK_dKd​)。神经网络通过学习系统的误差信号,自动调节 PID 参数,从而优化控制性能,尤其是在面对非线性、时变或复杂系统时。

1. 基本原理

(1) PID 控制器概述

PID 控制器是根据误差和误差的变化量调整控制信号,以实现系统的稳定和快速响应。PID 控制器的控制信号计算公式为:

(2) BP 神经网络概述

BP 神经网络是一种常见的前馈神经网络,通过反向传播算法进行训练,逐步调整网络的权重。BP 神经网络通常包括输入层、隐层和输出层。网络的目标是通过最小化误差函数,学习输入和输出之间的映射关系。

在基于 BP 神经网络整定的 PID 控制中,神经网络的输入是系统的误差信号和误差变化量,输出是 PID 控制器的三个增益(KpK_pKp​,KiK_iKi​,KdK_dKd​)的调整量。神经网络通过优化这些增益,使得控制系统的误差最小化。

3. C++实现基于 BP 神经网络整定的 PID 控制

以下是一个简化版的基于 BP 神经网络整定的 PID 控制的 C++ 实现:

#include <iostream>
#include <vector>
#include <cmath>

class BPNeuralNetwork {
private:
    int input_size, hidden_size, output_size;
    double learning_rate;
    std::vector<std::vector<double>> input_to_hidden_weights;  // 输入到隐藏层的权重
    std::vector<std::vector<double>> hidden_to_output_weights; // 隐藏层到输出层的权重
    st
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值