范式理解(0范式,1范式,2范式)

本文深入探讨了范数的概念,从函数、几何与矩阵的角度解析其意义。介绍了映射、矩阵与向量之间的关系,以及如何通过范数衡量集合与变化过程的大小,覆盖了0范数、1范数和2范数的具体含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.zhihu.com/question/20473040
可以从函数、几何与矩阵的角度去理解范数。

我们都知道,函数与几何图形往往是有对应关系的,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函数的高度形象化,比如一个函数对应几何空间上若干点组成的图形。
但当函数与几何超出三维空间时,就难以获得较好的想象,于是就有了映射的概念,映射表达的就是一个集合通过某种关系转为另外一个集合。通常数学书是先说映射,然后再讨论函数,这是因为函数是映射的一个特例。
为了更好的在数学上表达这种映射关系,(这里特指线性关系)于是就引进了矩阵。这里的矩阵就是表征上述空间映射的线性关系。而通过向量来表示上述映射中所说的这个集合,而我们通常所说的基,就是这个集合的最一般关系。于是,我们可以这样理解,一个集合(向量),通过一种映射关系(矩阵),得到另外一个集合(另外一个向量)。
那么向量的范数表示这个原有集合的大小
矩阵的范数表示这个变化过程的大小的一个度量
简单的说就是:

0范数,向量中非零元素的个数。
1范数,为绝对值之和。
2范数,就是通常意义上的模。

向量范数

在这里插入图片描述

矩阵范数

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值