很显然,我没有看懂 HRNN 是啥意思,没有去看论文,应该就是一种RNN结构的变形吧
网络结构如下:
__________________________________________________________________________________________
Layer (type) Output Shape Param #
==========================================================================================
input_1 (InputLayer) (None, 28, 28, 1) 0
__________________________________________________________________________________________
time_distributed_1 (TimeDistributed) (None, 28, 128) 66560
__________________________________________________________________________________________
lstm_2 (LSTM) (None, 128) 131584
__________________________________________________________________________________________
dense_1 (Dense) (None, 10) 1290
==========================================================================================
Total params: 199,434
Trainable params: 199,434
Non-trainable params: 0
__________________________________________________________________________________________
输入是图片,输出是分类
类似的,mnist_irnn.py 的网络结构如下:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
simple_rnn_1 (SimpleRNN) (None, 100) 10200
_________________________________________________________________
dense_1 (Dense) (None, 10) 1010
_________________________________________________________________
activation_1 (Activation) (None, 10) 0
=================================================================
Total params: 11,210
Trainable params: 11,210
Non-trainable params: 0
_________________________________________________________________
——————————————————————
总目录