// CONVEX HULL I
// modified by rr 不能去掉点集中重合的点
#include <stdlib.h>
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point{double x,y;};
//计算cross product (P1-P0)x(P2-P0)
double xmult(point p1,point p2,point p0){
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
//graham算法顺时针构造包含所有共线点的凸包,O(nlogn)
point p1,p2;
int graham_cp(const void* a,const void* b){
double ret=xmult(*((point*)a),*((point*)b),p1);
return zero(ret)?(xmult(*((point*)a),*((point*)b),p2)>0?1:-1):(ret>0?1:-1);
}
void _graham(int n,point* p,int& s,point* ch){
int i,k=0;
for (p1=p2=p[0],i=1;i<n;p2.x+=p[i].x,p2.y+=p[i].y,i++)
if (p1.y-p[i].y>eps||(zero(p1.y-p[i].y)&&p1.x>p[i].x))
p1=p[k=i];
p2.x/=n,p2.y/=n;
p[k]=p[0],p[0]=p1;
qsort(p+1,n-1,sizeof(point),graham_cp);
for (ch[0]=p[0],ch[1]=p[1],ch[2]=p[2],s=i=3;i<n;ch[s++]=p[i++])
for (;s>2&&xmult(ch[s-2],p[i],ch[s-1])<-eps;s--);
}
//构造凸包接口函数,传入原始点集大小n,点集p(p原有顺序被打乱!)
//返回凸包大小,凸包的点在convex中
//参数maxsize为1包含共线点,为0不包含共线点,缺省为1
//参数clockwise为1顺时针构造,为0逆时针构造,缺省为1
//在输入仅有若干共线点时算法不稳定,可能有此类情况请另行处理!
//不能去掉点集中重合的点
int graham(int n,point* p,point* convex,int maxsize=1,int dir=1){
point* temp=new point[n];
int s,i;
_graham(n,p,s,temp);
for (convex[0]=temp[0],n=1,i=(dir?1:(s-1));dir?(i<s):i;i+=(dir?1:-1))
if (maxsize||!zero(xmult(temp[i-1],temp[i],temp[(i+1)%s])))
convex[n++]=temp[i];
delete []temp;
return n;
}
// CONVEX HULL II
// modified by mgmg 去掉点集中重合的点
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point{double x,y;};
//计算cross product (P1-P0)x(P2-P0)
double xmult(point p1,point p2,point p0){
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
//graham算法顺时针构造包含所有共线点的凸包,O(nlogn)
point p1,p2;
int graham_cp(const void* a,const void* b){
double ret=xmult(*((point*)a),*((point*)b),p1);
return zero(ret)?(xmult(*((point*)a),*((point*)b),p2)>0?1:-1):(ret>0?1:-1);
}
void _graham(int n,point* p,int& s,point* ch){
int i,k=0;
for (p1=p2=p[0],i=1;i<n;p2.x+=p[i].x,p2.y+=p[i].y,i++)
if (p1.y-p[i].y>eps||(zero(p1.y-p[i].y)&&p1.x>p[i].x))
p1=p[k=i];
p2.x/=n,p2.y/=n;
p[k]=p[0],p[0]=p1;
qsort(p+1,n-1,sizeof(point),graham_cp);
for (ch[0]=p[0],ch[1]=p[1],ch[2]=p[2],s=i=3;i<n;ch[s++]=p[i++])
for (;s>2&&xmult(ch[s-2],p[i],ch[s-1])<-eps;s--);
}
int wipesame_cp(const void *a, const void *b)
{
if ((*(point *)a).y < (*(point *)b).y - eps) return -1;
else if ((*(point *)a).y > (*(point *)b).y + eps) return 1;
else if ((*(point *)a).x < (*(point *)b).x - eps) return -1;
else if ((*(point *)a).x > (*(point *)b).x + eps) return 1;
else return 0;
}
int _wipesame(point * p, int n)
{
int i, k;
qsort(p, n, sizeof(point), wipesame_cp);
for (k=i=1;i<n;i++)
if (wipesame_cp(p+i,p+i-1)!=0) p[k++]=p[i];
return k;
}
//构造凸包接口函数,传入原始点集大小n,点集p(p原有顺序被打乱!)
//返回凸包大小,凸包的点在convex中
//参数maxsize为1包含共线点,为0不包含共线点,缺省为1
//参数clockwise为1顺时针构造,为0逆时针构造,缺省为1
//在输入仅有若干共线点时算法不稳定,可能有此类情况请另行处理!
int graham(int n,point* p,point* convex,int maxsize=1,int dir=1){
point* temp=new point[n];
int s,i;
n = _wipesame(p,n);
_graham(n,p,s,temp);
for (convex[0]=temp[0],n=1,i=(dir?1:(s-1));dir?(i<s):i;i+=(dir?1:-1))
if (maxsize||!zero(xmult(temp[i-1],temp[i],temp[(i+1)%s])))
convex[n++]=temp[i];
delete []temp;
return n;
}
double area_polygon(int n,point* p)//多边形面积
{
double s1=0,s2=0;
int i;
for (i=0; i<n; i++)
s1+=p[(i+1)%n].y*p[i].x,s2+=p[(i+1)%n].y*p[(i+2)%n].x;
return fabs(s1-s2)/2;
}
///多边形费马点,点集pt,大小n,传入ptres作为费马点这一点,返回值是所有点到费马点的距离
double fermat_point(point pt [], int n, point & ptres)
{
point u, v;
double step = 0.0, curlen, explen, minlen;
int i, j, k, idx;
bool flag;
u.x = u.y = v.x = v.y = 0.0;
for (i = 0; i < n; ++i)
{
step += fabs(pt[i].x) + fabs(pt[i].y);
u.x += pt[i].x;
u.y += pt[i].y;
}
u.x /= n;
u.y /= n;
flag = 0;
while (step > 1e-10)
{
for (k = 0; k < 10; step /= 2, ++k)
for (i = -1; i <= 1; ++i)
for (j = -1; j <= 1; ++j)
{
v.x = u.x + step*i;
v.y = u.y + step*j;
curlen = explen = 0.0;
for (idx = 0; idx < n; ++idx)
{
curlen += distance(u, pt[idx]);
explen += distance(v, pt[idx]);
}
if (curlen > explen)
{
u = v;
minlen = explen;
flag = 1;
}
}
}
ptres = u;
return flag ? minlen : curlen;
}
//RC算法求凸包直径(有问题)
int rotating_calipers(point *ch, int n)
{
int q = 1, ans = 0;
ch[n] = ch[0];
for (int p = 0; p < n; p++)
{
while (xmult(ch[p + 1], ch[q + 1], ch[p]) > xmult(ch[p + 1], ch[q], ch[p]))
q = (q + 1)%n;
ans = max(ans, max(dist2(ch[p], ch[q]), dist2(ch[p + 1], ch[q + 1])));
}
return ans;
}
Computational Geometry Template_Convex Hull
最新推荐文章于 2020-11-01 13:13:42 发布