RT-2论文深度解读:视觉-语言-动作统一模型的机器人泛化革命

1. 核心问题与挑战

传统机器人学习存在两大瓶颈:

  • 数据效率低下:依赖特定场景的机器人操作数据(如抓取、推压),收集成本高
  • 泛化能力局限:模型仅能完成训练中出现过的任务,无法应对长尾场景

RT-2的创新目标:利用互联网规模的视觉语言预训练知识,实现机器人技能的零样本(zero-shot)迁移


2. 方法论突破

2.1 统一语义空间构建
  • 数据范式革新

    • 将机器人动作表示为"语言化"Token序列(如 move_to(x=0.3,y=0.2)
    • 与视觉语言数据共同输入Transformer,建立跨模态联合嵌入空间
  • 模型架构

    class RT2(nn.Module):
        def __init__(self):
            self.vision_encoder = ViT-22B           # 视觉编码器
            self.tokenizer = ActionTokenizer()      # 动作分词器
            self.transformer = Transformer-XL       # 跨模态融合
            
        def forward(self, image, text):
            img_tokens = self.vision_encoder(image) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值