信息论知识:互信息、交叉熵、KL散度

本文介绍了信息论中的关键概念,包括自信息、香农熵、联合熵、条件熵、互信息和KL散度。自信息是单个事件的信息量,香农熵衡量整个分布的不确定性。互信息描述了已知一个随机变量如何减少另一个随机变量的不确定性,而KL散度衡量了两个概率分布的差异。交叉熵则结合了熵和相对熵,用于评估模型预测分布与真实分布的匹配程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

信息论的基本想法是一个不太可能的事件居然发生了,要比一个非常可能的事件发生,能提供更多的信息。消息说:‘‘今天早上太阳升起’’ 信息量是如此之少以至于没有必要发送,但一条消息说:‘‘今天早上有日食’’ 信息量就很丰富。

我们想要通过这种基本想法来量化信息。定义三个性质

  • 非常可能发生的事件信息量要比较少,并且极端情况下,确保能够发生的事件应该没有信息量。
  • 较不可能发生的事件具有更高的信息量。
  • 独立事件应具有增量的信息。例如,投掷的硬币两次正面朝上传递的信息量,应该是投掷一次硬币正面朝上的信息量的两倍。

在两元随机变量情况下,可以使用下图帮助理解和记忆

自信息

为了满足上述三个性质,我们定义一个事件 x = x 的自信息(self-information):

I(x)=logP(x) I ( x ) = − l o g P ( x ) ,log为自然对数

I(x) 的单位是奈特(nats),1 nats是以1/e 的概率观测到一个事件时获得的信息量。如果是以2的对数计算,单位就是比特(bit)或香农(shannons)。

香农熵

自信息只处理单个的输出,用香农熵(Shannon entropy)来对整个概率分布中的不确定性总量进行量化:

H(X)=E(I(x))=xXP(x)logP(x) H ( X ) = E ( I ( x ) ) = − ∑ x ∈ X P ( x ) l o g P ( x )

一个分布的香农熵是指遵循这个分布的事件所产生的期望信息总量。

联合熵 joint entropy

联合熵:表示随机变量X,Y同时发生的不确定性。

H(X,Y)=xX,yYP(x,y)logP(x,y) H ( X , Y ) = − ∑ x ∈ X , y ∈ Y P ( x , y ) l o g P ( x , y )

对于多变量:

性质

非负性: H(X,Y)0 H ( X , Y ) ≥ 0

大于单个变量的熵 H(X,Y)max[H(X),H(Y)] H ( X , Y ) ≥ m a x [ H ( X ) , H ( Y ) ]

H(X,Y)H(X)+H(Y) H ( X , Y ) ≤ H ( X ) + H ( Y )

条件熵

条件熵:在已知一个变量发生的条件下,另一个变量发生所新增加的不确定性:

H(Y|X=x) H ( Y | X = x

### 信息熵 信息熵是一种衡量随机变量不确定性的指标。对于离型随机变量 \(X\),其概率质量函数为 \(P(X)\),则信息熵定义如下: \[ H(X) = - \sum_{i=1}^{n} P(x_i) \log_2(P(x_i)) \] 其中,\(P(x_i)\) 表示事件 \(x_i\) 发生的概率[^1]。 信息熵越高,则系统的不确定性越大;反之亦然。 --- ### 交叉熵 交叉熵是用来衡量两个概率分布之间差异的一种方法,在机器学习中广泛应用于分类任务中的损失计算。假设真实分布为 \(P\),预测分布为 \(Q\),那么交叉熵可以表示为: \[ H(P, Q) = - \sum_{i=1}^{n} P(x_i) \log(Q(x_i)) \] 这里需要注意的是,交叉熵不仅依赖于真实的概率分布 \(P\),还取决于模型预测的概率分布 \(Q\)。因此,它是评估模型性能的重要工具之一[^2]。 --- ### KL KL (Kullback-Leibler divergence),也称为相对熵,用于量化两个概率分布之间的差异程。给定两个概率分布 \(P\) 和 \(Q\),KL 的公式为: \[ D_{KL}(P || Q) = \sum_{i=1}^{n} P(x_i) \log{\frac{P(x_i)}{Q(x_i)}} \] 值得注意的是,KL 具有 **非对称性** 和 **非负性** 的特点。即通常情况下 \(D_{KL}(P || Q) \neq D_{KL}(Q || P)\)[^3]。 --- ### JS JS (Jensen-Shannon divergence)是对称版本的 KL ,解决了 KL 不对称的问题。它通过引入中间分布来实现这一点。设 \(M = \frac{1}{2}(P + Q)\),则 JS 可写成: \[ D_{JS}(P || Q) = \frac{1}{2} D_{KL}(P || M) + \frac{1}{2} D_{KL}(Q || M) \] 由于 JS 基于 KL 构建,所以它的取值范围在 \([0, 1]\) 内,并且满足对称性和有限性条件。 --- ### 定义区别与联系 | 指标 | 描述 | |------------|------------------------------------------------------------------------------------------| | **信息熵** | 测量单个随机变量本身的不确定性 | | **交叉熵** | 量两个概率分布间的差异,主要用于监督学习中的目标优化 | | **KL ** | 计算一个分布相对于另一个分布的信息增益或“距离”,是非对称的 | | **JS ** | 基于 KL 改进而来,解决非对称问题并提供更稳定的数值表现 | 这些概念都属于信息论范畴,但在实际应用中有不同的侧重点。例如,交叉熵被频繁用作神经网络训练的目标函数,而 KL 更多地出现在变分推断等领域。 --- ### 在机器学习和深学习中的作用 - **信息熵**:帮助理解数据集内部结构以及特征的重要性。 - **交叉熵**:作为分类任务的核心损失函数,指导模型参数调整以最小化误差。 - **KL **:适用于生成对抗网络 (GANs) 或变分自编码器 (VAEs) 中隐空间分布匹配的任务。 - **JS **:相比 KL 更加稳定可靠,尤其适合处理不平衡样本情况下的相似比较场景。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值