1:数据合并之Join
#默认情况下把行索引相同的数据合并到一起。(行合并)
#coding=utf=8
import numpy as np
import pandas as pd
df1=pd.DataFrame(np.ones((2,4)),index=['A','B'],columns=list('abcd'))
#print(df1)
df2=pd.DataFrame(np.zeros((3,3)),index=['A','B','C'],columns=list('xyz'))
#print(df2)
print(df2.join(df1))
2:np.ones( )
一维数组:np.ones(2)
多维数组:np.ones( (2,3) )
3:数据合并之merge
#合并时没有一样的为空
#coding=utf=8
import numpy as np
import pandas as pd
df1=pd.DataFrame(np.ones((2,4)),index=['A','B'],columns=list('abcd'))
#print(df1)
df2=pd.DataFrame(np.zeros((3,3)),index=['A','B','C'],columns=list('xyz'))
#print(df2)
#print(df2.join(df1))
df3=pd.DataFrame(np.zeros((3,3)),columns=list('fax'))
#print(df3)
print(df1.merge(df3,on='a'))
#并连接
#coding=utf=8 import numpy as np import pandas as pd df1=pd.DataFrame(np.ones((2,4)),index=['A','B'],columns=list('abcd')) df1.loc['A','a']=100 print(df1) print('*'*100) df2=pd.DataFrame(np.zeros((3,3)),index=['A','B','C'],columns=list('xyz')) #print(df2) #print(df2.join(df1)) df3=pd.DataFrame(np.arange(9).reshape((3,3)),columns=list('fax')) print(df3) print('*'*100) print(df1.merge(df3,on='a'))
#coding=utf=8 import numpy as np import pandas as pd df1=pd.DataFrame(np.ones((2,4)),index=['A','B'],columns=list('abcd')) df1.loc['A','a']=100 print(df1) print('*'*100) df2=pd.DataFrame(np.zeros((3,3)),index=['A','B','C'],columns=list('xyz')) #print(df2) #print(df2.join(df1)) df3=pd.DataFrame(np.arange(9).reshape((3,3)),columns=list('fax')) print(df3) print('*'*100) print(df1.merge(df3,on='a')) print('*'*100) print(df1.merge(df3,on='a',how='inner')) print('*'*100) print(df1.merge(df3,on='a',how='outer')) print('*'*100) print(df1.merge(df3,on='a',how='left')) print('*'*100) print(df1.merge(df3,on='a',how='right')) print(df1.merge(df3,left_on='b',right_on='x',how='left'))
4:df2.loc[1,a]=1
#第1行的a列赋值为1