1:导入数据
import pandas as pd
date_path=pd.read_csv('./drinks.csv')
pd.set_option('display.max_row',200)
print(date_path.info())
print(date_path.head())
2:哪个大陆平均消耗的啤酒最多?
import pandas as pd
date_path=pd.read_csv('./drinks.csv')
pd.set_option('display.max_row',200)
# print(date_path.info())
# print(date_path.head())
beer_mean=date_path.groupby('continent').mean().beer_servings
print(beer_mean)
#列索引要加iloc,而行索引用切片,切片只是加[:1]
3:打印出每个大陆(continent)的红酒消耗(wine_servings)的描述性统计信息
#使用describe的信息
import pandas as pd
date_path=pd.read_csv('./drinks.csv')
pd.set_option('display.max_row',200)
print(date_path.groupby('continent').wine_servings.describe())
4:打印出每个大陆每种酒类别的消耗平均值
import pandas as pd
date_path=pd.read_csv('./drinks.csv')
pd.set_option('display.max_row',200)
print(date_path.groupby('continent').mean())
5:打印出每个大陆对spirit饮品消耗的平均值,最大值,最小值(.agg聚合的意思,是aggregate的意思)
import pandas as pd
date_path=pd.read_csv('./drinks.csv')
pd.set_option('display.max_row',200)
print(date_path.groupby('continent').spirit_servings.agg(['mean','max','min']))
该代码段展示了使用Pandas库对CSV文件中的饮品消费数据进行处理,包括导入数据、计算各大陆啤酒平均消耗量、显示每个大陆红酒的描述性统计信息、列出所有酒类的平均消耗以及spirit饮品的平均、最大和最小消耗值。
4629

被折叠的 条评论
为什么被折叠?



