【线性代数】理解正定矩阵和半正定矩阵

本文深入讲解了正定矩阵与半正定矩阵的概念及其几何意义,通过实例解释了这些矩阵的特征值为何必须大于0,并探讨了它们在机器学习中的应用。

1 前言

  内容为自己的学习总结,其中多有借鉴他人的地方,最后一并给出链接。

2 定义

  在机器学习和谱图理论的学习中,总会用到正定矩阵半正定矩阵概念,了解它们的概念是十分必要的。
定义:正定矩阵(positive definite, PD)
  给定一个大小为 n × n n×n n×n的实对称矩阵 A A A,若对于任意长度为 n n n的非零向量 X X X,有 X T A X > 0 X^TAX>0 XTAX>0恒成立,则矩阵 A A A是一个正定矩阵。

定义:半正定矩阵(positive semi-definite, PSD)
  给定一个大小为 n × n n×n n×n的实对称矩阵 A A A,若对于任意长度为 n n n的非零向量 X X X,有 X T A X ≥ 0 X^TAX \ge 0 XTAX0恒成立,则矩阵 A A A是一个正定矩阵。
  看个一个例子(来源参考文献【3】):

(1)单位矩阵 I ∈ R 2 × 2 I \in \mathbb{R}^{2 \times 2} IR2×2是不是正定矩阵?
  设向量 x = [ x 1 x 2 ] ∈ R 2 \boldsymbol{x}=\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right] \in \mathbb{R}^{2} x=[x1x2]R2为非 0 0 0向量,则

   x T I x = x T x = x 1 2 + x 2 2 \boldsymbol{x}^{T} I \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{x}=x_{1}^{2}+x_{2}^{2} xTIx=xTx=x12+x22

  由于 x ≠ 0 \boldsymbol{x} \neq \mathbf{0} x=0,故而 x T I x > 0 \boldsymbol{x}^{T} I \boldsymbol{x}>0 xTIx>

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值