C++11右值引用:从移动语义到完美转发

目录

1. 左值和右值

2. 左值引⽤和右值引⽤

3. 引⽤延⻓⽣命周期

3. 左值和右值的参数匹配

4. 右值引⽤和移动语义的使⽤场景

4.1 移动构造和移动赋值

4.2 右值引⽤和移动语义解决传值返回问题

5 引⽤折叠

6 完美转发


1. 左值和右值

• 左值是⼀个表⽰数据的表达式(如变量名或解引⽤的指针),⼀般是有持久状态,存储在内存中,我们可以获取它的地址,左值可以出现赋值符号的左边,也可以出现在赋值符号右边。定义时const修饰符后的左值,不能给他赋值,但是可以取它的地址。

• 右值也是⼀个表⽰数据的表达式,要么是字⾯值常量、要么是表达式求值过程中创建的临时对象等,右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边,右值不能取地址。

• 值得⼀提的是,左值的英⽂简写为lvalue,右值的英⽂简写为rvalue。传统认为它们分别是leftvalue、right value 的缩写。现代C++中,lvalue 被解释为locator value的缩写,可意为存储在内存中、有明确存储地址可以取地址的对象,⽽ rvalue 被解释为 read value,指的是那些可以提供数据值,但是不可以寻址,例如:临时变量,字⾯量常量,存储于寄存器中的变量等,也就是说左值和右值的核⼼区别就是能否取地址

// 左值:可以取地址
// 以下的p、b、c、*p、s、s[0]就是常⻅的左值
int* p = new int(0);
int b = 1;
const int c = b;
*p = 10;
string s("111111");
s[0] = 'x';

// 右值:不能取地址
double x = 1.1, y = 2.2;
// 以下⼏个10、x + y、fmin(x, y)、string("11111")都是常⻅的右值
10;
x + y;
fmin(x, y);
string("11111");

2. 左值引⽤和右值引⽤

• Type& r1 = x; Type&& rr1 = y; 第⼀个语句就是左值引⽤,左值引⽤就是给左值取别名,第⼆个就是右值引⽤,同样的道理,右值引⽤就是给右值取别名。

• 左值引⽤不能直接引⽤右值,但是const左值引⽤可以引⽤右值

• 右值引⽤不能直接引⽤左值,但是右值引⽤可以引⽤move(左值)

• 需要注意的是变量表达式都是左值属性,也就意味着⼀个右值被右值引⽤绑定后,右值引⽤变量变量表达式的属性是左值

// 左值:可以取地址
// 以下的p、b、c、*p、s、s[0]就是常⻅的左值
int* p = new int(0);
int b = 1;
const int c = b;
*p = 10;
string s("111111");
s[0] = 'x';
double x = 1.1, y = 2.2;
// 左值引⽤给左值取别名
int& r1 = b;
int*& r2 = p;
int& r3 = *p;
string& r4 = s;
char& r5 = s[0];
// 右值引⽤给右值取别名
int && rr1 = 10;
double&& rr2 = x + y;
double&& rr3 = fmin(x, y);
string&& rr4 = string("11111");
// 左值引⽤不能直接引⽤右值,但是const左值引⽤可以引⽤右值
const int& rx1 = 10;
const double& rx2 = x + y;
const double& rx3 = fmin(x, y);
const string& rx4 = string("11111");
// 右值引⽤不能直接引⽤左值,但是右值引⽤可以引⽤move(左值)
int&& rrx1 = move(b);
int*&& rrx2 = move(p);
int&& rrx3 = move(*p);
string&& rrx4 = move(s);
string&& rrx5 = (string&&)s;
// b、r1、rr1都是变量表达式,都是左值
cout << &b << endl;
cout << &r1 << endl;
cout << &rr1 << endl;
// 这⾥要注意的是,rr1的属性是左值,所以不能再被右值引⽤绑定,除⾮move⼀下
int& r6 = r1;
// int&& rrx6 = rr1;
int&& rrx6 = move(rr1);

3. 引⽤延⻓⽣命周期

右值引⽤可⽤于为临时对象延⻓⽣命周期,const 的左值引⽤也能延⻓临时对象⽣存期,但这些对象⽆法被修改。
 

int main()
{
	std::string s1 = "Test";
	// std::string&& r1 = s1; // 错误:不能绑定到左值
	const std::string& r2 = s1 + s1; // OK:到 const 的左值引⽤延⻓⽣存期
	// r2 += "Test"; // 错误:不能通过到 const 的引⽤修改
	std::string&& r3 = s1 + s1; // OK:右值引⽤延⻓⽣存期
	r3 += "Test"; // OK:能通过到⾮ const 的引⽤修改
	std::cout << r3 << '\n';
	return 0;
}

3. 左值和右值的参数匹配

• C++98中,我们实现⼀个const左值引⽤作为参数的函数,那么实参传递左值和右值都可以匹配。

• C++11以后,分别重载左值引⽤、const左值引⽤、右值引⽤作为形参的f函数,那么实参是左值会匹配f(左值引⽤),实参是const左值会匹配f(const 左值引⽤),实参是右值会匹配f(右值引⽤)。

• 右值引⽤变量在⽤于表达式时属性是左值,这个设计这⾥会感觉跟怪,下⼀⼩节我们讲右值引⽤的使⽤场景时,就能体会这样设计的价值了。

void f(int& x)
{
	std::cout << "左值引⽤重载 f(" << x << ")\n";
}
void f(const int& x)
{
	std::cout << "到 const 的左值引⽤重载 f(" << x << ")\n";
} 
void f(int&& x)
{
	std::cout << "右值引⽤重载 f(" << x << ")\n";
}

int main()
{
	int i = 1;
	const int ci = 2;
	f(i); // 调⽤ f(int&)
	f(ci); // 调⽤ f(const int&)
	f(3); // 调⽤ f(int&&),如果没有 f(int&&) 重载则会调⽤ f(const int&)
	f(std::move(i)); // 调⽤ f(int&&)
	// 右值引⽤变量在⽤于表达式时是左值
	int && x = 1;
	f(x); // 调⽤ f(int& x)
	f(std::move(x)); // 调⽤ f(int&& x)
	return 0;
}

4. 右值引⽤和移动语义的使⽤场景

4.1 移动构造和移动赋值

• 移动构造函数是⼀种构造函数,类似拷⻉构造函数,移动构造函数要求第⼀个参数是该类类型的引⽤,但是不同的是要求这个参数是右值引⽤,如果还有其他参数,额外的参数必须有缺省值。

• 移动赋值是⼀个赋值运算符的重载,他跟拷⻉赋值构成函数重载,类似拷⻉赋值函数,移动赋值函数要求第⼀个参数是该类类型的引⽤,但是不同的是要求这个参数是右值引⽤。

• 对于像string/vector这样的深拷⻉的类或者包含深拷⻉的成员变量的类,移动构造和移动赋值才有意义,因为移动构造和移动赋值的第⼀个参数都是右值引⽤的类型,他的本质是要“窃取”引⽤的右值对象的资源,⽽不是像拷⻉构造和拷⻉赋值那样去拷⻉资源,从提⾼效率。下⾯借助我们自己实现的string类来进行理解。

#include<iostream>
#include<assert.h>
using namespace std;


namespace zephyr05 {

	class string
	{
	public:
		typedef char* iterator;
		typedef const char* const_iterator;
		iterator begin()
		{
			return _str;
		}
		iterator end()
		{
			return _str + _size;
		}
		const_iterator begin() const
		{
			return _str;
		}
		const_iterator end() const
		{
			return _str + _size;
		}
		string(const char* str = "")
			:_size(strlen(str))
			, _capacity(_size)
		{
			cout << "string(char* str)-构造" << endl;
			_str = new char[_capacity + 1];
			strcpy(_str, str);
		}
		void swap(string& s)
		{
			std::swap(_str, s._str);
			std::swap(_size, s._size);
			std::swap(_capacity, s._capacity);
		}
		string(const string& s)
			:_str(nullptr)
		{
			cout << "string(const string& s) -- 拷⻉构造" << endl;
			reserve(s._capacity);
			for (auto ch : s)
			{
				push_back(ch);
			}
		}
		// 移动构造
		string(string&& s)
		{
			cout << "string(string&& s) -- 移动构造" << endl;
			swap(s);
		}
		string& operator=(const string& s)
		{
			cout << "string& operator=(const string& s) -- 拷⻉赋值" <<
				endl;
			if (this != &s)
			{
				_str[0] = '\0';
				_size = 0;
				reserve(s._capacity);
				for (auto ch : s)
				{
					push_back(ch);
				}
			}
			return*this;
		}
		// 移动赋值
		string& operator=(string&& s)
		{
			cout << "string& operator=(string&& s) -- 移动赋值" << endl;
			swap(s);
			return *this;
		}
		~string()
		{
			cout << "~string() -- 析构" << endl;
			delete[] _str;
			_str = nullptr;
		}
		char& operator[](size_t pos)
		{
			assert(pos < _size);
			return _str[pos];
		}
		void reserve(size_t n)
		{
			if (n > _capacity)
			{
				char* tmp = new char[n + 1];
				if (_str)
				{
					strcpy(tmp, _str);
					delete[] _str;
				} 
				_str = tmp;
				_capacity = n;
			}
		}
		void push_back(char ch)
		{
			if (_size >= _capacity)
			{
				size_t newcapacity = _capacity == 0 ? 4 : _capacity *
					2;
				reserve(newcapacity);
			}
			_str[_size] = ch;
			++_size;
			_str[_size] = '\0';
		}
		string& operator+=(char ch)
		{
			push_back(ch);
			return *this;
		}
		const char* c_str() const
		{
			return _str;
		}
		size_t size() const
		{
			return _size;
		}
	private:
		char* _str = nullptr;
		size_t _size = 0;
		size_t _capacity = 0;
	};
}
int main()
{
	zephyr05::string s1("xxxxx");
	// 拷⻉构造
	zephyr05::string s2 = s1;
	// 构造+移动构造,编译器优化后直接构造
	zephyr05::string s3 = zephyr05::string("yyyyy");
	// 移动构造
	zephyr05::string s4 = move(s1);
	cout << "******************************" << endl;
	return 0;
}

4.2 右值引⽤和移动语义解决传值返回问题
 

左值引⽤主要使⽤场景是在函数中左值引⽤传参和左值引⽤传返回值时减少拷⻉,同时还可以修改实参和修改返回对象的价值。左值引⽤已经解决⼤多数场景的拷⻉效率问题,但是有些场景不能使⽤传左值引⽤返回,如addStrings函数,C++98中的解决⽅案只能是被迫使⽤输出型参数解决(string addStrings(string num1, string num2,string &ret);。那么C++11以后这⾥可以使⽤右值引⽤做返回值解决吗?显然是不可能的,因为这⾥的本质是返回对象是⼀个局部对象,函数结束这个对象就析构销毁了,右值引⽤返回也⽆法概念对象已经析构销毁的事实。但是C++11以后就可以借助移动构造和移动赋值来提升传值返回的效率。

namespace zephyr05
{
	string addStrings(string num1, string num2)
	{
		string str;
		int end1 = num1.size() - 1, end2 = num2.size() - 1;
		int next = 0;
		while (end1 >= 0 || end2 >= 0)
		{
			int val1 = end1 >= 0 ? num1[end1--] - '0' : 0;
			int val2 = end2 >= 0 ? num2[end2--] - '0' : 0;
			int ret = val1 + val2 + next;
			next = ret / 10;
			ret = ret % 10;
			str += ('0' + ret);
		}
	if(next == 1)
			str += '1';
		reverse(str.begin(), str.end());
		cout << "******************************" << endl;
		return str;
	}
}

// 场景1
int main()
{
	zephyr05::string ret = zephyr05::addStrings("11111", "2222");
	cout << ret.c_str() << endl;
	return 0;
}
// 场景2
int main()
{
	zephyr05::string ret;
	ret = zephyr05::addStrings("11111", "2222");
	cout << ret.c_str() << endl;
	return 0;
}

场景一:

如果编译器不做任何优化,有移动构造的话,两次拷贝构造就变成了两次移动构造,相当于减少了两次深拷贝,可以提升运行效率。

需要注意的是在vs2019的release和vs2022的debug和release,上面代码优化为⾮常恐怖,会直接将str对象的构造,str拷⻉构造临时对象,临时对象拷⻉构造ret对象,合三为⼀,变为直接构造。

场景二:

需要注意的是在vs2019的release和vs2022的debug和release,上⾯代码会进⼀步优化,直接构造要返回的临时对象,str本质是临时对象的引⽤,底层⻆度⽤指针实现。运⾏结果的⻆度,我们可以看到str的析构是在赋值以后,说明str就是临时对象的别名。

5 引⽤折叠

• C++中不能直接定义引⽤的引⽤如 int& && r = i; ,这样写会直接报错,通过模板或 typedef中的类型操作可以构成引⽤的引⽤。

• 通过模板或 typedef 中的类型操作可以构成引⽤的引⽤时,这时C++11给出了⼀个引⽤折叠的规则:右值引⽤的右值引⽤折叠成右值引⽤,所有其他组合均折叠成左值引⽤。

• 下⾯的程序中很好的展⽰了模板和typedef时构成引⽤的引⽤时的引⽤折叠规则,⼤家需要⼀个⼀个仔细理解⼀下。

• 像f2这样的函数模板中,T&& x参数看起来是右值引⽤参数,但是由于引⽤折叠的规则,他传递左值时就是左值引⽤,传递右值时就是右值引⽤,有些地⽅也把这种函数模板的参数叫做万能引⽤。

• Function(T&& t)函数模板程序中,假设实参是int右值,模板参数T的推导int,实参是int左值,模板参数T的推导int&,再结合引⽤折叠规则,就实现了实参是左值,实例化出左值引⽤版本形参的Function,实参是右值,实例化出右值引⽤版本形参的Function。

template<class T>
void Function(T&& t)
{
	int a = 0;
	T x = a;
	//x++;
	cout << &a << endl;
	cout << &x << endl << endl;
} 
int main()
{
	// 10是右值,推导出T为int,模板实例化为void Function(int&& t)
	Function(10); // 右值
	int a;
	// a是左值,推导出T为int&,引⽤折叠,模板实例化为void Function(int& t)
	Function(a); // 左值
	// std::move(a)是右值,推导出T为int,模板实例化为void Function(int&& t)
	Function(std::move(a)); // 右值
	const int b = 8;
	// b是左值,推导出T为const int&,引⽤折叠,模板实例化为void Function(const int&t)
	// 所以Function内部会编译报错,x不能++
	Function(b); // const 左值
	// std::move(b)右值,推导出T为const int,模板实例化为void Function(const int&&t)
	// 所以Function内部会编译报错,x不能++
	Function(std::move(b)); // const 右值
	return 0;
}

6 完美转发

• Function(T&& t)函数模板程序中,传左值实例化以后是左值引⽤的Function函数,传右值实例化以后是右值引⽤的Function函数。

• 变量表达式都是左值属性,也就意味着⼀个右值被右值引⽤绑定后,右值引⽤变量表达式的属性是左值,也就是说Function函数中t的属性是左值,那么我们把t传递给下⼀层函数Fun,那么匹配的都是左值引⽤版本的Fun函数。这⾥我们想要保持t对象的属性,就需要使⽤完美转发实现。

• 完美转发forward本质是⼀个函数模板,他主要还是通过引⽤折叠的⽅式实现,下⾯⽰例中传递给Function的实参是右值,T被推导为int,没有折叠,forward内部t被强转为右值引⽤返回;传递给Function的实参是左值,T被推导为int&,引⽤折叠为左值引⽤,forward内部t被强转为左值引⽤返回。

template <class _Ty>
_Ty&& forward(remove_reference_t<_Ty>& _Arg) noexcept
{ // forward an lvalue as either an lvalue or an rvalue
	return static_cast<_Ty&&>(_Arg);
} 
void Fun(int& x) { cout << "左值引⽤" << endl; }
void Fun(const int& x) { cout << "const 左值引⽤" << endl; }
void Fun(int&& x) { cout << "右值引⽤" << endl; }
void Fun(const int&& x) { cout << "const 右值引⽤" << endl; }
template<class T>
void Function(T&& t)
{
	Fun(t);
	//Fun(forward<T>(t));
}
int main()
	{
		// 10是右值,推导出T为int,模板实例化为void Function(int&& t)
		Function(10); // 右值
		int a;
		// a是左值,推导出T为int&,引⽤折叠,模板实例化为void Function(int& t)
		Function(a); // 左值
		// std::move(a)是右值,推导出T为int,模板实例化为void Function(int&& t)
		Function(std::move(a)); // 右值
		const int b = 8;
		// a是左值,推导出T为const int&,引⽤折叠,模板实例化为void Function(const int&t)
		Function(b); // const 左值
		// std::move(b)右值,推导出T为const int,模板实例化为void Function(const int&&t)
		Function(std::move(b)); // const 右值
		return 0;
	}

那么本期的内容就到这里了,觉得有收获的同学们可以给个点赞、评论、关注、收藏哦,谢谢大家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值