【Description】
一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。
【Data Range】
1≤n≤100,1≤m≤2,1≤k≤10
【Analysis】
以前做过有印象,所以做之前没看数据范围
卡了很久没想出来,最后发现 m<=2
======================================
(1). m = 1 时
g[i][j]表示前i个数字选出j段的最大分值
转移是O(N)的,往前枚举即可
(2). m = 2时
f[i][j][k]表示第一列前i个数字,第二列前j个数字选出k个子矩阵的最大分值
转移还是O(N)
f[i][j][k] = max(f[i - 1][j][k], f[i][j - 1][k]);
f[i][j][k] = max{ f[i][j][k], f[x][j][k - 1] + s1[i] - s1[x] };
f[i][j][k] = max{ f[i][j][k], f[i][y][k - 1] + s2[j] - s2[y] };
当 i = j 时 f[i][j][k] = max{ f[i][j][k], f[x][x][k - 1] + s1[i] - s1[x] + s2[i] - s2[x] };
======================================
我想了下改变 i, j, k for 的顺序对转移是没有影响的
【Code】
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <climits>
#include <cstring>
#include <utility>
#include <vector>
#include <string>
#include <cstdio>
#include <bitset>
#include <ctime>
#include <cmath>
#include <stack>
#include <list>
#include <set>
#include <map>
using namespace std;
#define sci stack <int>
#define vci vector <int>
#define vcs vector <string>
#define vcd vector <double>
#define vci64 vector <long long>
#define seti set <int>
#define mseti multiset <int>
const int maxn = 100 + 5;
const int maxm = 2 + 5;
const int maxk = 10 + 5;
typedef unsigned int uint;
typedef long long int64;
typedef unsigned long long uint64;
template <class T> inline T Sqr(const T & x) { return x * x; }
template <class T> inline T Abs(const T & x) { return x > 0 ? x : -x; }
template <class T> inline T Min(const T & a, const T & b) { return a < b ? a : b; }
template <class T> inline T Max(const T & a, const T & b) { return a > b ? a : b; }
template <class T> inline T Ksm(const T & a, const T & b, const T & m) { T _ = 1; for (; b; b >>= 1, a = a * a % m) (b & 1) ? _ = _ * a % m : 0; return _ % m; }
template <class T> inline void Swap(T & a, T & b) { T _; _ = a; a = b; b = _; }
int n, m, K;
int s[maxn], s1[maxn], s2[maxn];
int g[maxn][maxk], f[maxn][maxn][maxk];
int getint()
{
char ch = getchar(); int result = 0, res = 1;
for (; '0' > ch || ch > '9'; ch = getchar()) ch == '-' ? res = -1 : 0;
for (; '0' <= ch && ch <= '9'; result = result * 10 + ch - '0', ch = getchar());
return result * res;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("matrix.in", "r", stdin);
freopen("matrix.out", "w", stdout);
#endif
if (n = getint(), m = getint(), K = getint(), m == 1)
{
for (int i = 1; i <= n; ++i) s[i] = s[i - 1] + getint();
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= K; ++j)
{
g[i][j] = g[i - 1][j];
for (int k = i - 1; k >= 0; --k)
g[i][j] = Max(g[i][j], g[k][j - 1] + s[i] - s[k]);
}
return printf("%d", g[n][K]), 0;
}
for (int i = 1; i <= n; ++i) s1[i] = s1[i - 1] + getint(), s2[i] = s2[i - 1] + getint();
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
for (int k = 1; k <= K; ++k)
{
f[i][j][k] = Max(f[i - 1][j][k], f[i][j - 1][k]);
for (int x = i - 1; x >= 0; --x)
f[i][j][k] = Max(f[i][j][k], f[x][j][k - 1] + s1[i] - s1[x]);
for (int y = j - 1; y >= 0; --y)
f[i][j][k] = Max(f[i][j][k], f[i][y][k - 1] + s2[j] - s2[y]);
if (i == j) for (int x = i - 1; x >= 0; --x)
f[i][j][k] = Max(f[i][j][k], f[x][x][k - 1] + s1[i] - s1[x] + s2[j] - s2[x]);
}
return printf("%d", f[n][n][K]), 0;
}