codeforces528E Triangles 3000

本文探讨了在平面上有n条直线时,随机选择三条直线形成三角形,计算其面积期望值的方法。通过将面积期望转化为所有可能三角形面积之和的平均值,文章介绍了一种基于叉积计算三角形面积和的算法,并提供了详细的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题面

题意

在平面上有n条直线,随机选择三条,其面积的期望大小是多少。

做法

很显然,面积的期望要转化为所有三角形的面积和除以 ( n 3 ) n\choose3 (3n),考虑计算三角形的面积和。
可以把三角形ABC的面积转化为(OA×OB+OB×OC+OC×OA)/2,这样只要分别计算这几个叉积的和即可。
经过观察不难发现,如果OA,OB的叉积会被计算,当且仅当A,B两点都在某条给出的直线上 ,因此我们可以枚举所有直线,计算直线上的交点两两的叉积和。
要注意叉积是有方向的,不满足交换律,这就意味着如果将点随意相乘会导致答案错误。所以要先对所有直线根据斜率排序,保证对于一个三角形上的三个点被逆时针加入,代码还是比较好理解的。

代码

#include<bits/stdc++.h>
#define db double
#define eps 1e-8
#define N 3010
using namespace std;

int n;
db x,y,sx,sy,ans;
struct Xn
{
    db a,b,c;
    bool operator < (const Xn &u) const
    {
		if(fabs(b)<eps) return 1;
		if(fabs(u.b)<eps) return 0;
		return a/b<u.a/u.b;
    }
}xn[N];

int main()
{
    int i,j;
    cin>>n;
    for(i=1;i<=n;i++) scanf("%lf%lf%lf",&xn[i].a,&xn[i].b,&xn[i].c);
    sort(xn+1,xn+n+1);
    for(i=1;i<=n;i++)
    {
		sx=sy=0;
		for(j=i%n+1;j!=i;j=j%n+1)
		{
		    x=(xn[j].c*xn[i].b-xn[i].c*xn[j].b)/(xn[i].a*xn[j].b-xn[j].a*xn[i].b);
		    y=(xn[j].c*xn[i].a-xn[i].c*xn[j].a)/(xn[j].a*xn[i].b-xn[i].a*xn[j].b);
		    //x,y表示i,j两条直线的交点
		    ans+=x*sy-y*sx;
		    sx+=x,sy+=y;
		}
    }
    printf("%.12f",ans*3/n/(n-1)/(n-2));
}

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值