hdu1757 A Simple Math Problem (矩阵快速幂)

本文介绍了一个递归数学问题的解决方法,通过矩阵快速幂算法高效计算特定递推数列的第k项并对m取模。该问题涉及递推公式定义及边界条件,并通过输入示例展示了具体的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Simple Math Problem

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3762    Accepted Submission(s): 2269


Problem Description
Lele now is thinking about a simple function f(x).

If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .

Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
 

Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
 

Output
For each case, output f(k) % m in one line.
 

Sample Input
  
10 9999 1 1 1 1 1 1 1 1 1 1 20 500 1 0 1 0 1 0 1 0 1 0
 

Sample Output
  
45 104
 

Author
linle
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   1588  3117  2276  2256  2254 
 


代码:

#include<cstdio>
using namespace std;

int m;

void multi(int (*x)[10],int (*y)[10])
{
  int i,j,k,c[10][10]={0};
  for(i=0;i<10;i++)
    for(j=0;j<10;j++)
      for(k=0;k<10;k++)
        c[i][j]+=x[i][k]*y[k][j];
  for(i=0;i<10;i++)
    for(j=0;j<10;j++)
      x[i][j]=c[i][j]%m; 
}

int main()
{
  //freopen("1.in","r",stdin);
  
  int k,i,j,a[10][10],b[10][10];
  while(scanf("%d%d",&k,&m)==2)
    {
      for(i=0;i<10;i++)scanf("%d",&a[0][i]);
      if(k<10){printf("%d\n",k%m);continue;}
      
      for(i=1;i<10;i++)
        for(j=0;j<10;j++)
          a[i][j]=(i-j==1);
      for(i=0;i<10;i++)
        for(j=0;j<10;j++)
          b[i][j]=(i==j);
          
	  for(k-=9;k;multi(a,a),k>>=1)if(k&1)multi(b,a);
      for(j=i=0;i<10;i++)j+=b[0][i]*(9-i);
      printf("%d\n",j%m);
	}
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值