hdu2046 骨牌铺方格 (菲波那切数列)

本文探讨了在2×n的长方形方格中使用1×2的骨牌铺满的所有可能方案数量,并通过递推算法实现了计算。举例说明了当n=3时的三种铺放方案。

骨牌铺方格

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 36971    Accepted Submission(s): 17920


Problem Description
在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数.
例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:
 

Input
输入数据由多行组成,每行包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0<n<=50)。
 

Output
对于每个测试实例,请输出铺放方案的总数,每个实例的输出占一行。
 

Sample Input
  
1 3 2
 

Sample Output
  
1 3 2
 

Author
lcy
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   1297  1465  2190  2501  1480 
 


解析:f[i] 表示 i 列方格的方案数,则:f[i]=f[i-1]+f[i-2]

            1. f[i-1]:最后一个骨牌是竖者的;

            2. f[i-2] :最后一个骨牌是横着的。

代码:

#include<cstdio>
using namespace std;

typedef long long LL;
const int maxn=50;
LL f[maxn+10];

int main()
{
  int n,i,j,k;
  f[1]=1,f[2]=2;
  for(i=3;i<=50;i++)f[i]=f[i-1]+f[i-2];  
  while(scanf("%d",&n)!=EOF)printf("%I64d\n",f[n]);
  return 0;
}


内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值