O(FVE)
应用bellman_ford算法求最短路
#include<cstring>
#include<vector>
using namespace std;
struct edge
{
int to, cap, cost, rev;
edge(int a, int b, int c, int d)
:to(a), cap(b), cost(c), rev(d){}
};
const int maxn = 10e5;
const int inf = 0x3f3f3f3f;
int n, m, f;
vector<edge> G[maxn];
int dis [maxn];
int pv[maxn], pe[maxn];
void add(int from, int to, int cap, int cost)
{
G[from].push_back(edge(to, cap, cost, G[to].size()));
G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));
}
void bellman_ford(int s)
{
memset(dis, inf, sizeof dis);
dis[s] = 0;
bool update = true;
while(update)
{
update = false;
for(int v= 0; v< n; v++)
{
if(dis[v] == inf) continue;
for(int i= 0; i< G[v].size(); i++)
{
edge e = G[v][i];
if(e.cap > 0 && dis[e.to] > dis[v] + e.cost)
{
dis[e.to] = dis[v] + e.cost;
pv[e.to] = v;
pe[e.to] = i;
update = true;
}
}
}
}
}
int min_cost_flow(int s, int t, int f)
{
int res = 0;
while(f > 0)
{
bellman_ford(s);
if(dis[t] == inf) return -1;
int d = f;
for(int v = t; v != s; v = pv[v])
d = min(d, G[pv[v]][pe[v]].cap);
f -= d;
res += d * dis[t];
for(int v= t; v != s; v = pv[v])
{
edge &e = G[pv[v]][pe[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
O(FVV)
导入“势”的概念通过dijkstra求解
#include<vector>
#include<queue>
#include<cstring>
using namespace std;
typedef pair<int, int> P;
struct edge
{
int to, cap, cost, rev;
edge(int a, int b, int c, int d)
:to(a), cap(b), cost(c), rev(d){}
};
const int maxn = 1e5;
const int inf = 0x3f3f3f3f;
int n, m, f;
vector<edge> G[maxn];
int h[maxn];
int dis[maxn];
int pv[maxn], pe[maxn];
void add(int from, int to, int cap, int cost)
{
G[from].push_back(edge(to, cap, cost, G[to].size()));
G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));
}
void dijkstra(int s)
{
priority_queue<P, vector<P>, greater<P> > qu;
memset(dis, inf, sizeof dis);
dis[s] = 0;
qu.push(P(0, s));
while(qu.size())
{
P p = qu.top();qu.pop();
int v = p.second;
if(dis[v] < p.first) continue;
for(int i= 0; i< G[v].size(); i++)
{
edge e = G[v][i];
if(e.cap > 0 && dis[e.to] > dis[v] + e.cost + h[v] - h[e.to])
{
dis[e.to] = dis[v] + e.cost + h[v] - h[e.to];
pv[e.to] = v;
pe[e.to] = i;
qu.push(P(dis[e.to], e.to));
}
}
}
}
int min_cost_flow(int s, int t, int f)
{
int res = 0;
memset(h, 0, sizeof h);
while(f > 0)
{
dijkstra(s);
if(dis[t] == inf) return -1;
for(int v= 0; v< n; v++)
h[v] += dis[v];
int d = f;
for(int v= t; v!= s; v= pv[v])
d = min(d, G[pv[v]][pe[v]].cap);
f -= d;
res += d * h[t];
for(int v= t; v!= s; v= pv[v])
{
edge &e = G[pv[v]][pe[v]];
e.cap -= d;
G[e.to][e.rev].cap += d;
}
}
return res;
}
注意
如果原图中存在负边,h[] 的初值需要用 bellman_ford算法求解