/*
题意:已知n个球,已知各个点的坐标和半径,求使各个求相连所需的桥的最短长度
Sample Input
3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
Sample Output
20.000
0.000
73.834
*/
/*
思路:边权 = 球距 = 球心距 - 半径1 - 半径2
注意若球距为负数,则视为0。
这道题我也是醉了。g++wa,c++就a了。
看了网上的讨论,说是对于双精度,g++输出用%f,c++输出用%lf,就a了,否则就会wa。
具体见:http://www.cnblogs.com/dongsheng/archive/2012/10/22/2734670.html
*/
#include <cstdio>
#include <algorithm>
#include <cmath>
#define N 105
using namespace std;
const double inf = 999999999.0;
typedef struct node {
double x; double y; double z; double r;
}point;
point a[N];
typedef struct note{
int u; int v; double w;
}edge;
edge e[N*N];
int n, m;
int f[N];
int cmp(edge a, edge b)
{
if (a.w < b.w) return 1;
else return 0;
}
double dis(int i, int j)
{
return sqrt(pow(a[i].x - a[j].x, 2) + pow(a[i].y - a[j].y, 2) + pow(a[i].z - a[j].z, 2));
}
void init()
{
for (int i = 0; i < n; i++)
f[i] = i;
}
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
int merge(int x, int y)
{
int t1, t2;
t1 = find(x); t2 = find(y);
if (t1 != t2) { f[t2] = t1; return 1; }
return 0;
}
int main()
{
while (scanf("%d", &n) != EOF && n)
{
for (int i = 0; i < n; i++)
scanf("%lf%lf%lf%lf", &a[i].x, &a[i].y, &a[i].z, &a[i].r);
m = 0;
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
e[m].u = i;
e[m].v = j;
e[m].w = max(0.0, dis(i, j) - a[i].r - a[j].r);
m++;
}
}
sort(e, e + m, cmp);
init();
int cnt = 0; double sum = 0.0;
for (int i = 0; i < m; i++)
{
if (merge(e[i].u, e[i].v))
{
cnt++;
sum += e[i].w;
}
if (cnt == n - 1) break;
}
printf("%.3f\n", sum);
}
return 0;
}