LightOJ 题目1027 - A Dangerous Maze(期望)

本文介绍了一种计算从危险迷宫中逃脱所需期望时间的算法。面对n个门的选择,每个门背后隐藏着返回起点或直接逃脱的时间值。通过分析输入数据,包括门的数量及其对应的正负值,算法能够计算出成功逃离迷宫所需的平均时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1027 - A Dangerous Maze
Time Limit: 2 second(s)Memory Limit: 32 MB

You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.

If you choose the ith door, it can either take you back to the same position where you begun in xi minutes, or can take you out of the maze after xi minutes. If you come back to the same position, you can't remember anything. So, every time you come to the beginning position, you have no past experience.

Now you want to find the expected time to get out of the maze.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains a blank line and an integer n (1 ≤ n ≤ 100) denoting the number of doors. The next line contains n space separated integers. If the ith integer (xi) is positive, you can assume that the ithdoor will take you out of maze after xi minutes. If it's negative, then the ith door will take you back to the beginning position after abs(xi) minutes. You can safely assume that 1 ≤ abs(xi) ≤ 10000.

Output

For each case, print the case number and the expected time to get out of the maze. If it's impossible to get out of the maze, print 'inf'. Print the result in p/q format. Where p is the numerator of the result and q is the denominator of the result and they are relatively prime. See the samples for details.

Sample Input

Output for Sample Input

3

 

1

1

 

2

-10 -3

 

3

3 -6 -9

Case 1: 1/1

Case 2: inf

Case 3: 18/1

 


PROBLEM SETTER: JANE ALAM JAN

题目大意:一个迷宫有n个门,每个对应一个值,正值表示经过这么多秒后直接出迷宫,负值代表这么多秒后回到最开始的地方,问最后出去的期望

思路:一次出去的概率为n1/n期望为n/n1,一次出去的平均时间问sum(t)/n,期望两个相乘即,sum(t)/n1

ac代码

616445 2015-11-18 19:53:53 1027 - A Dangerous Maze C++ 0.000 1688
Accepted
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int gcd(int a,int b)
{
    if(a<b)
    {
        int t=a;
        a=b;
        b=t;
    }
    if(b==0)
        return a;
    return gcd(b,a%b);
}
int main()
{
    int t,c=0;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        scanf("%d",&n);
        int sum=0,n1=0;
        int i;
        for(i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            if(x<0)
                sum-=x;
            else
            {
                sum+=x;
                n1++;
            }
        }
        if(n1==0)
        {
            printf("Case %d: inf\n",++c);
            continue;
        }
        int tmp=gcd(sum,n1);
        printf("Case %d: %d/%d\n",++c,sum/tmp,n1/tmp);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值