双线性插值

1、为什么要用图像的插值?

       在图像的放大和缩小的过程中,需要计算新图像像素点在原图的位置,如果计算的位置不是整数,就需要用到图像的内插,我们需要寻找在原图中最近得像素点赋值给新的像素点,这种方法很简单是最近邻插法,这种方法好理解、简单,但是不实用,会产生是真现象,产生棋盘格效应,更实用的方法就是双线性内插。

2、一维线性插值

我们已经知道(x0,y0)与(x1, y1)的值,并且已知 x 的值,要求 y 的值。根据初中的知识:

3、双线性插值

       双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。

        假如我们想得到未知函数 f 在点 P=\left( x, y\right) 的值,假设我们已知函数 f 在 Q_{11} = \left( x_1, y_1 \right)Q_{12} = \left( x_1, y_2 \right)Q_{21} = \left( x_2, y_1 \right), 及 Q_{22} = \left( x_2, y_2 \right) 四个点的值。

     首先在 x 方向进行线性插值,得到

然后在 y 方向进行线性插值,得到

这样就得到所要的结果 f \left( x, y \right)

果选择一个坐标系统使得 f 的四个已知点坐标分别为 (0, 0)、(0, 1)、(1, 0) 和 (1, 1),那么插值公式就可以化简为:

或者用矩阵运算表示为:

      与这种插值方法名称不同的是,这种插值方法的结果通常不是线性的,它的形式是:

     常数的数目都对应于给定的 f 的数据点数目:

线性插值的结果与插值的顺序无关。首先进行 y 方向的插值,然后进行 x 方向的插值,所得到的结果是一样的。

其中上面的公式的推倒过程如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值