题意:给你一个01矩阵,求最大的1矩阵面积。
题解:dp,dp[i][j]表示从0,0到i,j最大的矩形边长。转移:
dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int n = matrix.size();
if(n == 0) return 0;
int m = matrix[0].size();
int dp[n + 1][m + 1];
memset(dp,0,sizeof(dp));
int ans = 0;
for(int i = 0; i < n; i++)
{
dp[i][0] = matrix[i][0] - '0';
ans = max(ans,dp[i][0]);
}
for(int i = 0; i < m; i++)
{
dp[0][i] = matrix[0][i] - '0';
ans = max(ans,dp[0][i]);
}
for(int i = 1; i < n; i++)
{
for(int j = 1; j < m; j++)
{
if(matrix[i][j] == '1') dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
ans = max(ans,dp[i][j]);
}
}
return ans * ans;
}
};