Necklace of Beads
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 6061 | Accepted: 2515 |
Description
Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < 24 ). If the repetitions that are produced by rotation around the center of the circular necklace or reflection to the axis of symmetry are all neglected, how many different forms of the necklace are there?

Input
The input has several lines, and each line contains the input data n.
-1 denotes the end of the input file.
-1 denotes the end of the input file.
Output
The output should contain the output data: Number of different forms, in each line correspondent to the input data.
Sample Input
4 5 -1
Sample Output
21 39
Source
Xi'an 2002
很经典的一道题目,用Polya定理或者Burnside引理解决
很经典的一道题目,用Polya定理或者Burnside引理解决
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define N 30
using namespace std;
__int64 a[N];
int main()
{
//freopen("data.in","r",stdin);
int gcd(int x,int y);
a[1] = 3;
for(int i=2;i<=25;i++)
{
a[i]=a[i-1]*3;
}
int n;
while(scanf("%d",&n)!=EOF)
{
if(n==-1)
{
break;
}
if(n==0)
{
printf("0\n");
continue;
}
__int64 res1=0;
for(int i=1;i<=n;i++)
{
res1+=(a[gcd(i,n)]);
}
__int64 res2=0;
if(n%2)
{
res2 +=(n*a[(n+1)/2]);
}else
{
res2+=((n/2)*(a[(n/2)+1]+a[n/2]));
}
cout<<(res1+res2)/2/n<<endl;
}
return 0;
}
int gcd(int x,int y)
{
return y==0 ? x:gcd(y,x%y);
}