[Codeforces 980E] The Number Games

(emm…懒惰的博主终于开始写题解了,然而怎么还是水题。。)

传送门
题意:给出一颗 N N N个节点的树,第 i i i个节点的权值为 2 i 2^i 2i, 现在你必须删除 K K K个节点( K < N K < N K<N),并且保证剩下的点都联通的情况下,使得剩下的点权值最大。

删除 K K K个节点,就是选择 N − K N-K NK个节点嘛…
看到有 2 i 2^i 2i,应该很容易想到贪心的思路吧…
优先选取 i i i大的点,毕竟那些小的就算全部加起来也没这个大。。。
首先,节点 N N N肯定要选的啦,然后就以N为根了。
然后 i i i N − 1 N-1 N1枚举到1,因为题目要求联通,那从 i i i到根路径上所有未选点肯定都要选了,而且肯定是连续一条链。
那怎么找到这条链上离 i i i最远且未选过的点呢。。倍增就好了。。。
emm本来还想画个图…然而谁能给我推荐一下ubuntu下要用什么画啊。。。
而且博主是个连怎么装软件都没完全搞清楚的小白啊。。。。
扯…扯远了。。
贴代码吧

#include<bits/stdc++.h>
using namespace std;
const int N=1000001;
const int M=2000001;
const int Lg=20;
int n,m,Next[M],head[N],v[M],f[N][Lg],b[N],cnt,dep[N];   //b数组标记是否选过,f就是祖先的ST表

inline void read(int &x){
	char ch=getchar();x=0;
	for(;ch<'0'||ch>'9';ch=getchar());
	for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
}

void add(int x,int y){   //挂链存边
	Next[++cnt]=head[x];
	head[x]=cnt;
	v[cnt]=y;
}

void dfs(int x,int fa){
	dep[x]=dep[fa]+1;
	f[x][0]=fa;
	for(int i=head[x];i!=-1;i=Next[i])
	 if (v[i]!=fa) dfs(v[i],x);
}

int getf(int x){   //找出这条链上离x最远且未选过的点
	for(int i=Lg-1;i>=0;i--)
	 if (!b[f[x][i]]) x=f[x][i];
	return f[x][0];
}

void baoli(int x){    //暴力将路径上的节点标记为选过
	for(;!b[x];x=f[x][0]) b[x]=1;
}

int main(){
	read(n);read(m);
	m=n-m;
	memset(head,-1,sizeof head);
	for(int i=1;i<n;i++){
		int x,y;
		read(x);read(y);
		add(x,y);
		add(y,x);
	}
	dfs(n,0);    //以n为根建树
	for(int i=1;i<Lg;i++)
	 for(int j=1;j<=n;j++)
	  f[j][i]=f[f[j][i-1]][i-1];   //建ST表用来倍增
	b[n]=1;b[0]=1;m--;
	for(int i=n-1;i;i--)
	 if (!b[i]){
		int fa=getf(i);
		if (dep[i]-dep[fa]<=m){
			m-=dep[i]-dep[fa];
			baoli(i);
		}
	 }
	for(int i=1;i<=n;i++)
	 if (!b[i]) printf("%d ",i);
	return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值