原码、反码、补码

原码、反码、补码

 

结束了各种进制的转换,我们来谈谈另一个话题:原码、反码、补码。

 

我们已经知道计算机中,所有数据最终都是使用二进制数表达。

我们也已经学会如何将一个10进制数如何转换为二进制数。

不过,我们仍然没有学习一个负数如何用二进制表达。

 

比如,假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为:

00000000 00000000 00000000 00000101

5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。

现在想知道,-5在计算机中如何表示?

 

在计算机中,负数以其正值的补码形式表达

什么叫补码呢?这得从原码,反码说起。

 

原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。

比如 00000000 00000000 00000000 00000101 是 5的 原码。

 

反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。

取反操作指:原为1,得0;原为0,得1。(1变0; 0变1)

比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。

称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。

反码是相互的,所以也可称:

11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。

 

补码:反码加1称为补码。

也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。

比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。

那么,补码为:

11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011

 

所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。转换为十六进制:0xFFFFFFFB。

 

再举一例,我们来看整数-1在计算机中如何表示。

假设这也是一个int类型,那么:

 

1、先取1的原码:00000000 00000000 00000000 00000001

2、得反码:     11111111 11111111 11111111 11111110

3、得补码:     11111111 11111111 11111111 11111111

 

可见,-1在计算机里用二进制表达就是全1。16进制为:0xFFFFFF。

 

我们学习了原码、反码、补码。

把原码的0变1,1变0,就得到反码。要得到补码,则先得反码,然后加1。

以前我们只知道正整数在计算机里是如何表达,现在我们还知道负数在计算机里使用其绝对值的补码表达。

比如,-5在计算机中如何表达?回答是:5的补码。

 
### 原码反码补码的概念及区别 在计算机系统中,数值的表示和运算依赖于原码反码补码这三种编码形式。它们的核心区别在于对负数的表示方式不同,并且在加减法运算中的处理逻辑也有所差异。 #### 原码 原码是最直观的二进制表示方法,其中最高位为符号位(0 表示正数,1 表示负数),其余位表示数值的绝对值。例如: - +1 的 8 位原码为 `00000001` - -1 的 8 位原码为 `10000001` 原码的优点是表示直观,但缺点是在进行加减运算时需要额外判断符号位,导致计算复杂度较高 [^1]。 #### 反码 反码是对原码的改进形式,主要用于简化补码的生成或解析过程: - 正数的反码原码相同。 - 负数的反码为符号位保持不变,其余位逐位取反(0 变 1,1 变 0)。 例如: - +1 的反码为 `00000001` - -1 的反码为 `11111110` 需要注意的是,在 8 位系统中,+0 和 -0 的反码分别为 `00000000` 和 `11111111`,这会导致两个不同的编码表示同一个数值 [^1]。 #### 补码 补码是现代计算机中最常用的数值表示方式,它解决了原码反码中存在的多个问题,尤其是简化了加减法运算的实现: - 正数的补码原码相同。 - 负数的补码反码加 1。 例如: - +1 的补码为 `00000001` - -1 的补码为 `11111111` 补码的一个重要特性是其可以表示一个比原码范围更广的数值。例如,在 8 位系统中,原码的表示范围为 -127 到 +127,而补码的表示范围为 -128 到 +127。其中 `-128` 的补码为 `10000000`,这个值没有对应的原码表示 [^2]。 #### 计算方法总结 | 类型 | 正数 | 负数 | |--------|--------------------------|--------------------------------------| | 原码 | 符号位为 0,其余为数值本身 | 符号位为 1,其余为数值的绝对值 | | 反码 | 与原码相同 | 原码符号位不变,其余位取反 | | 补码 | 与原码相同 | 反码加 1 | #### 在计算机底层的应用 补码被广泛用于计算机的底层数值存储和运算,主要原因如下: 1. **统一加减运算**:使用补码可以将减法转换为加法,从而简化硬件设计。 2. **唯一零表示**:在补码系统中,0 的表示是唯一的(全 0)。 3. **溢出处理**:补码支持模运算,因此可以自然地处理溢出情况。 例如,在 Java 中,当整数类型发生截断时,结果会自动以补码形式解释。以下代码展示了如何通过强制类型转换截断高位,得到补码表示的数值: ```java public class Main { public static void main(String[] args) { int a = 300; // 00000000 00000000 00000001 00101100 byte b = (byte)a; // 00101100 -> 44 int c = 200; // 00000000 00000000 00000000 11001000 byte d = (byte)c; // 11001000 -> -56 System.out.println(b); // 输出 44 System.out.println(d); // 输出 -56 } } ``` 上述代码表明,当高位被截断后,低位部分按照补码规则重新解释为有符号整数 [^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值