HDU 1505 UVALive 3029 City Game

City Game
Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Description

Download as PDF

Bob is a strategy game programming specialist. In his new city building game the gaming environment is as follows: a city is built up by areas, in which there are streets, trees, factories and buildings. There is still some space in the area that is unoccupied. The strategic task of his game is to win as much rent money from these free spaces. To win rent money you must erect buildings, that can only be rectangular, as long and wide as you can. Bob is trying to find a way to build the biggest possible building in each area. But he comes across some problems – he is not allowed to destroy already existing buildings, trees, factories and streets in the area he is building in.

Each area has its width and length. The area is divided into a grid of equal square units. The rent paid for each unit on which you're building stands is 3$.

Your task is to help Bob solve this problem. The whole city is divided into K areas. Each one of the areas is rectangular and has a different grid size with its own length M and width N. The existing occupied units are marked with the symbol R. The unoccupied units are marked with the symbol F.

Input

The first line of the input file contains an integer K – determining the number of datasets. Next lines contain the area descriptions. One description is defined in the following way: The first line contains two integers-area length M<=1000 and width N<=1000, separated by a blank space. The next M lines contain N symbols that mark the reserved or free grid units, separated by a blank space. The symbols used are:
R – reserved unit 
F – free unit
In the end of each area description there is a separating line.

Output

For each data set in the input file print on a separate line, on the standard output, the integer that represents the profit obtained by erecting the largest building in the area encoded by the data set.

Sample Input

2
5 6
R F F F F F
F F F F F F
R R R F F F
F F F F F F
F F F F F F

5 5
R R R R R
R R R R R
R R R R R
R R R R R
R R R R R

Sample Output

45
0
 
   
 
   
 
   
 
   
 
   
 
   
#include <cstdio>
#include <algorithm>
#define LL long long
using namespace std;
const int maxn = 1001;

int mat[maxn][maxn], up[maxn][maxn], le[maxn][maxn], rig[maxn][maxn];
int main()
{
    int t, ans;
    int m, n, i, j, lo, ro;
    scanf("%d",&t);
    while(t--)
    {
        ans = 0;
        scanf("%d%d", &m, &n);
        for(i = 0; i < m; i++)
        {
            for(j = 0; j < n; j++)
            {
                char ch = getchar();
                while(ch!='F'&&ch!='R')
                {
                    ch = getchar();
                }
                mat[i][j] = ch == 'F' ?0:1;

            }
        }
        for(i = 0; i < m; i++)
        {
            lo = -1;
            ro = n;
            for(j = 0; j < n; j++)
            {
                if(mat[i][j] == 1)
                {
                    //le数组存储的是矩形的左边界
                    up[i][j] = le[i][j] = 0;//up数组存储的是上边界,相当于长方形的宽
                    lo = j;
                }
                else
                {
                    up[i][j] = i == 0?1:up[i-1][j] + 1;
                    le[i][j] = i == 0 ? lo+1 : max(le[i-1][j], lo+1);
                }
            }

            for(j = n-1; j >= 0; j--)
            {
                if(mat[i][j] == 1)
                {//rig存储的是矩形的右边界
                    rig[i][j] = n;
                    ro = j;

                }
                else
                {
                    //rig[i][j] - le[i][j]得到的是矩形的长
                    rig[i][j] = i ==0 ? ro-1 : min(rig[i-1][j], ro-1);
                    ans = max(ans, up[i][j]*(rig[i][j]-le[i][j]+1)); //他们的乘积是子矩形的面积
                }
            }

        }
        
        printf("%d\n", ans*3);

    }
    return 0;

}

 
  
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶孤心丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值