Transformer逐层分解

本文详细介绍了Transformer架构,包括编码器和解码器的堆栈结构,自注意力机制,以及训练过程中的输入处理和位置编码。还探讨了词嵌入层和位置编码的作用,以及矩阵维度在模型中的流动。

什么是Transformer?

Transformer架构擅长处理文本数据,这些数据本身是有顺序的。他们将一个文本序列作为输入,并产生另一个文本序列作为输出。例如,讲一个输入的英语句子翻译成西班牙语。

Transformer的核心部分,包含一个编码器层和解码器层的堆栈。

为了避免混淆,我们把单个层称为编码器或解码器,并使用编码器堆栈或解码器堆栈分别表示一组编码器与一组解码器。

在编码器堆栈和解码器堆栈之前,都有对应的嵌入层。而在解码器堆栈后,有一个输出层来生成最终的输出。

编码器堆栈中的每个编码器的结构相同。解码器堆栈也是如此。其各自结构如下:

  1. 编码器:一般有两个子层:包含自注意力层self-attention,用于计算序列中不同词之间的关系;同时包含一个前馈层feed-forward。
  2. 解码器:一般有三个子层:包含自注意力层self-attention,前馈层feed-forward,编码器-解码器注意力层Decoder-Encoder self attention。
  3. 每个编码器和解码器都有独
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YEGE学AI算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值