Image detection

#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>
 
#ifdef _EiC
#define WIN32
#endif
 
static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;
 
void detect_and_draw( IplImage* image );
  
int main( int argc, char** argv )
{
    CvCapture* capture = 0;
    IplImage *frame, *frame_copy = 0;
    int optlen = strlen("--cascade=");
    const char* input_name;

    char *cascade_name = "H://opencv-2.4.3//opencv//data//haarcascades//haarcascade_frontalface_alt2.xml";
        //opencv装好后haarcascade_frontalface_alt2.xml的路径,
       //也可以把这个文件拷到你的工程文件夹下然后不用写路径名cascade_name= "haarcascade_frontalface_alt2.xml";  
       //或者cascade_name ="C:\\Program Files\\OpenCV\\data\\haarcascades\\haarcascade_frontalface_alt2.xml"
    cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );
 
    if( !cascade )
    {
        fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
        fprintf( stderr,
        "Usage: facedetect --cascade=\"<cascade_path>\" [filename|camera_index]\n" );
        return -1;
    }
    storage = cvCreateMemStorage(0);
 
   
        capture = cvCaptureFromCAM(-1);
   
    cvNamedWindow( "result", 1 );
 
    if( capture )
    {
        for(;;)
        {
            if( !cvGrabFrame( capture ))
                break;
            frame = cvRetrieveFrame( capture );
            if( !frame )
                break;
            if( !frame_copy )
                frame_copy = cvCreateImage( cvSize(frame->width,frame->height),
                                            IPL_DEPTH_8U, frame->nChannels );
            if( frame->origin == IPL_ORIGIN_TL )//如果图像的起点在左上角
                cvCopy( frame, frame_copy, 0 );
            else
                cvFlip( frame, frame_copy, 0 );//如果图像的起点不在左上角,而在左下角时,进行X轴对称
 
            detect_and_draw( frame_copy );
 
            if( cvWaitKey( 10 ) >= 0 )
                break;
        }
 
        cvReleaseImage( &frame_copy );
        cvReleaseCapture( &capture );
    }
    else
    {
        printf("Cannot read from CAM");
		return -1;
    }
 
    cvDestroyWindow("result");
 
    return 0;
}
 
void detect_and_draw( IplImage* img )
{
    static CvScalar colors[] = 
    {
        {{0,0,255}},
        {{0,128,255}},
        {{0,255,255}},
        {{0,255,0}},
        {{255,128,0}},
        {{255,255,0}},
        {{255,0,0}},
        {{255,0,255}}
    };
 
    double scale = 1.3;
    IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
    IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
                         cvRound (img->height/scale)),
                     8, 1 );
    int i;
 
    cvCvtColor( img, gray, CV_BGR2GRAY );
    cvResize( gray, small_img, CV_INTER_LINEAR );
    cvEqualizeHist( small_img, small_img );
    cvClearMemStorage( storage );
 
    if( cascade )
    {
        double t = (double)cvGetTickCount();
        CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,
                                            1.1, 2, 0/*CV_HAAR_DO_CANNY_PRUNING*/,
                                            cvSize(30, 30) );
        t = (double)cvGetTickCount() - t;
        printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );
        for( i = 0; i < (faces ? faces->total : 0); i++ )
        {
            CvRect* r = (CvRect*)cvGetSeqElem( faces, i );
            CvPoint center;
            int radius;
            center.x = cvRound((r->x + r->width*0.5)*scale);
            center.y = cvRound((r->y + r->height*0.5)*scale);
            radius = cvRound((r->width + r->height)*0.25*scale);
            cvCircle( img, center, radius, colors[i%8], 3, 8, 0 );
        }
    }
 
    cvShowImage( "result", img );
    cvReleaseImage( &gray );
    cvReleaseImage( &small_img );
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值