洛谷P3455 [POI2007]ZAP-Queries

本文介绍了一种用于破解密码的算法,该算法通过计算特定条件下的整数对数量来解决相关问题。利用莫比乌斯反演简化计算过程,并采用整除分块技术优化效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He has alreadyfound out that whilst deciphering a message he will have to answer multiple queries of the form"for givenintegers aa , bb and dd , find the number of integer pairs (x,y)(x,y) satisfying the following conditions:

1xa ,1yb ,gcd(x,y)=d , where gcd(x,y) is the greatest common divisor of x and y ".

Byteasar would like to automate his work, so he has asked for your help.

TaskWrite a programme which:

reads from the standard input a list of queries, which the Byteasar has to give answer to, calculates answers to the queries, writes the outcome to the standard output.

FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

输入输出格式

输入格式:

The first line of the standard input contains one integer nn (1n50 000 ),denoting the number of queries.

The following nn lines contain three integers each: aa , bb and dd (1da,b50 000 ), separated by single spaces.

Each triplet denotes a single query.

输出格式:

Your programme should write nn lines to the standard output. The ii 'th line should contain a single integer: theanswer to the i

i 'th query from the standard input

输入输出样例

输入样例#1: 
2
4 5 2
6 4 3
输出样例#1: 
3
2



我们设:

f(k)=i=1aj=1b[gcd(i,j)=k]

F(n)=nkf(k)=nanb

则可以由莫比乌斯反演可以推出:f(n)=nkμ(nk)F(k)

设完这两个函数之后,我们便惊喜的发现,Ans=f(d)

于是就直接开始推答案:

Ans=dkμ(dk)F(k)

枚举dk ,设为t ,则

Ans=t=1min(a,b)μ(t)tdatdb

这时候,这个式子已经可以做到O(n) 的时间复杂度了,但是因为有多组数据,所以我们再用一下整除分块,这题就可以做到O(sqrt(n)) 了。

附代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN (1<<16)
using namespace std;
long long k=0,prime[MAXN],mu[MAXN],sum[MAXN];
bool vis[MAXN];
inline int read(){
	int date=0,w=1;char c=0;
	while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
	while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
	return date*w;
}
void make(){
	int m=MAXN-10;
	mu[1]=1;
	for(int i=2;i<=m;i++){
		if(!vis[i]){
			mu[i]=-1;
			prime[++k]=i;
		}
		for(int j=1;j<=k&&prime[j]*i<=m;j++){
			vis[prime[j]*i]=true;
			if(i%prime[j]==0)break;
			else mu[prime[j]*i]=-mu[i];
		}
	}
	for(int i=1;i<=m;i++)sum[i]=sum[i-1]+mu[i];
}
void work(){
	long long a,b,d,maxn,ans=0;
	a=read();b=read();d=read();
	maxn=min(a,b);
	for(long long l=1,r;l<=maxn;l=r+1){
		r=min(a/(a/l),b/(b/l));
		ans+=(a/(l*d))*(b/(l*d))*(sum[r]-sum[l-1]);
	}
	printf("%lld\n",ans);
}
int main(){
	int t=read();
	make();
	while(t--)work();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值