题目描述
小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。
输入输出格式
输入格式:第一行两个整数n,m,表示点的个数和边的个数。
接下来m行每行两个数字u,v,表示一条u到v的边。
输出格式:一行一个数字,表示到公司的最少秒数。
输入输出样例
输入样例#1:
4 4 1 1 1 2 2 3 3 4
输出样例#1:
1
说明
【样例解释】
1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。
【数据范围】
50%的数据满足最优解路径长度<=1000;
100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。
倍增+最短路,均用Floyd。
预处理出所有1s能到达的点对,再求最短路。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 60
#define MAXM 10010
using namespace std;
int n,m,a[MAXN][MAXN],f[MAXN][MAXN][35];
inline int read(){
int date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
void floyd(){
for(int l=1;l<=32;l++)
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(f[i][k][l-1]==1&&f[k][j][l-1]==1)
f[i][j][l]=a[i][j]=1;
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
}
int main(){
int u,v;
n=read();m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=(i==j)?0:100;
for(int i=1;i<=m;i++){
u=read();v=read();
a[u][v]=1;
f[u][v][0]=1;
}
floyd();
printf("%d\n",a[1][n]);
return 0;
}