import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 5, padding=2)
self.maxpool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(32, 32, 5, padding=2)
self.maxpool2 = nn.MaxPool2d(2)
self.conv3 = nn.Conv2d(32, 64, 5, padding=2)
self.maxpool3 = nn.MaxPool2d(2)
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(1024, 64)
self.linear2 = nn.Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x
model = MyModel()
print(model)
model1 = MyModel()
input = torch.ones((64, 3, 32, 32))
output = model1(input)
print(output.shape)
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
model_1 = MyModule()
input = torch.ones((64, 3, 32, 32))
output = model_1(input)
print(output.shape)
dataset = torchvision.datasets.CIFAR10(root='D:\PyCharm\CIFAR10', train=False,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, drop_last=True)
class MyModel_1(nn.Module):
def __init__(self):
super(MyModel_1, self).__init__()
self.model2 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model2(x)
return x
model_2 = MyModel_1()
writer = SummaryWriter("logs14")
model_2 = MyModel_1()
input = torch.ones((64, 3, 32, 32))
output = model_2(input)
print(output.shape)
writer.add_graph(model_2, input)
writer.close()