import torch
import torchvision
from torch import nn
from torch.nn import L1Loss, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)
inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))
loss = L1Loss()
result = loss(inputs, targets)
print(result)
loss_1 = L1Loss(reduction="sum")
result_1 = loss_1(inputs, targets)
print(result_1)
inputs_1 = torch.tensor([1, 2, 3], dtype=torch.float32)
targets_1 = torch.tensor([1, 2, 5], dtype=torch.float32)
inputs_1 = torch.reshape(inputs_1, (1, 1, 1, 3))
targets_1 = torch.reshape(targets_1, (1, 1, 1, 3))
loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs_1, targets_1)
print(result_mse)
x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x, y)
print(result_cross)
dataset = torchvision.datasets.CIFAR10(root='D:\PyCharm\CIFAR10', train=False,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, drop_last=True)
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.model1 = nn.Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2, 2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
return self.model1(x)
return x
model = MyModel()
for data in dataloader:
imgs, targets = data
outputs = model(imgs)
print(outputs.shape)
print(targets)
loss = nn.CrossEntropyLoss()
model_1 = MyModel()
for data in dataloader:
imgs, targets = data
outputs = model_1(imgs)
result_cross = loss(outputs, targets)
print(result_cross)
loss_2 = nn.CrossEntropyLoss()
model_2 = MyModel()
for data in dataloader:
imgs, targets = data
outputs_2 = model_2(imgs)
result_loss = loss_2(outputs_2, targets)
result_loss.backward()
print(result_loss)