import torch
import torchvision.datasets
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]], dtype=torch.float32)
input = torch.reshape(input, [-1, 1, 5, 5])
print(input.shape)
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.maxpool = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool(input)
return output
model = MyModule()
output = model(input)
print(output)
dataset = torchvision.datasets.CIFAR10(root='D:\PyCharm\CIFAR10', train=False,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)
class MyModule1(nn.Module):
def __init__(self):
super(MyModule1, self).__init__()
self.maxpool = nn.MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool(input)
return output
model = MyModule1()
writer = SummaryWriter("logs10")
step = 0
for data in dataloader:
imgs, targets = data
for i, img in enumerate(imgs):
img_input_hwc = img.permute(1, 2, 0)
writer.add_image('input', img_input_hwc, step, dataformats="HWC")
output = model(input)
for i, img in enumerate(imgs):
img_output_hwc = img.permute(1, 2, 0)
writer.add_image('output', img_output_hwc, step, dataformats="HWC")
step = step + 1
writer.close()