import torch
from torch import nn
import torchvision
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10(root="D:\PyCharm\CIFAR10", train=False,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)
for data in dataloader:
imgs, targets = data
print(imgs.shape)
output = torch.reshape(imgs, (1, 1, 1, -1))
print(output.shape)
datset = torchvision.datasets.CIFAR10(root="D:\PyCharm\CIFAR10", train=False,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, drop_last=True)
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.linear1 = Linear(196608, 10)
def forward(self, input):
output = self.linear1(input)
return output
model = MyModel()
writer = SummaryWriter("logs12")
step = 0
for data in dataloader:
imgs, targets = data
print(f"imgs.shape:{imgs.shape}")
for i, img in enumerate(imgs):
img_input_hwc = img.permute(1, 2, 0)
writer.add_image("input", img_input_hwc, step, dataformats="HWC")
output = torch.reshape(imgs, (1, 1, 1, -1))
print(f"output.shape:{output.shape}")
output = model(output)
print(f"output = model(output)的shape:{output.shape}")
for i, img in enumerate(imgs):
img_output_hwc = img.permute(1, 2, 0)
writer.add_image("output", img_output_hwc, step, dataformats="HWC")
step = step + 1
writer.close()
dataset = torchvision.datasets.CIFAR10(root="D:\PyCharm\CIFAR10", train=False,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, drop_last=True)
class MyModel_1(nn.Module):
def __init__(self):
super(MyModel_1, self).__init__()
self.linear2 = nn.Linear(196608, 10)
def forward(self, input):
output = self.linear2(input)
return output
model_1 = MyModel_1()
writer = SummaryWriter("logs13")
step = 0
for data in dataloader:
imgs, targets = data
print(f"imgs.shape:{imgs.shape}")
for i, img in enumerate(imgs):
img_input_hwc = img.permute(1, 2, 0)
writer.add_image("input", img_input_hwc, step, dataformats="HWC")
output = torch.flatten(imgs)
print(f"output.shape:{output.shape}")
output = model_1(output)
print(f"output =model_1(output):{output.shape}")
for i, img in enumerate(imgs):
img_output_hwc = img.permute(1, 2, 0)
writer.add_image("output", img_output_hwc, step, dataformats="HWC")
step = step + 1
writer.close()