import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
input = torch.tensor([[1, -0.5],
[-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.relu = nn.ReLU()
def forward(self, input):
output = self.relu(input)
return output
model = MyModule()
output = model(input)
print(output)
dataset = torchvision.datasets.CIFAR10(root='D:\PyCharm\CIFAR10', train=False,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset=dataset, batch_size=64)
class MyModule_1(nn.Module):
def __init__(self):
super(MyModule_1, self).__init__()
self.sigmoid = nn.Sigmoid()
def forward(self, input):
output = self.sigmoid(input)
return output
model_1 = MyModule_1()
writer = SummaryWriter("logs11")
step = 0
for data in dataloader:
imgs, targets = data
for i, img in enumerate(imgs):
input_img_hwc = img.permute(1, 2, 0)
writer.add_image('input', input_img_hwc, step, dataformats="HWC")
output = model_1(imgs)
for i, img in enumerate(imgs):
output_img_hwc = img.permute(1, 2, 0)
writer.add_image('output', output_img_hwc, step, dataformats="HWC")
step = step + 1
writer.close()