考虑一个朴素的DP:
f[i][x][y]f[i][x][y]表示时间ii钢琴到达的最长距离。
这样啃腚是会TLE的,但可以发现时间段的个数不多,因此可以转化一下:
f[i][x][y]f[i][x][y]表示时间ii钢琴到达的最长距离。
转移方程为(tt表示第个时间段的长度):
向右走:f[i][x][y]=min{f[i−1][x][k]+(y−k)}f[i][x][y]=min{f[i−1][x][k]+(y−k)}
向左走:f[i][x][y]=min{f[i−1][x][k]+(k−y)}f[i][x][y]=min{f[i−1][x][k]+(k−y)}
向上走:f[i][x][y]=min{f[i−1][k][y]+(k−x)}f[i][x][y]=min{f[i−1][k][y]+(k−x)}
向下走:f[i][x][y]=min{f[i−1][k][y]+(x−k)}f[i][x][y]=min{f[i−1][k][y]+(x−k)}
其中(a,b)(a,b)可以转移到(c,d)(c,d)的条件是这两个点之间没有家具。
可以看出可以转移到的kk具有单调性。
因此可以使用单调队列进行优化。复杂度。
代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
int res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
return bo ? ~res + 1 : res;
}
const int N = 205, INF = 0x3f3f3f3f;
int n, m, X, Y, K, L[N], R[N], dir[N], f[N][N][N], H, T, Q[N];
char s[N][N];
void pL(int w) {
int i, j; for (i = 1; i <= n; i++) for (j = 1; j <= m;) {
for (; j <= m && s[i][j] == 'x'; j++) f[w][i][j] = -INF; H = T = 0;
int st = j; for (; j <= m && s[i][j] == '.'; j++) {
while (H < T && f[w - 1][i][Q[T]] - Q[T] < f[w - 1][i][j] - j) T--;
Q[++T] = j;
while (H < T && Q[H + 1] < max(st, j - R[w] + L[w] - 1)) H++;
f[w][i][j] = f[w - 1][i][Q[H + 1]] + j - Q[H + 1];
}
}
}
void pR(int w) {
int i, j; for (i = 1; i <= n; i++) for (j = m; j;) {
for (; j && s[i][j] == 'x'; j--) f[w][i][j] = -INF; H = T = 0;
int st = j; for (; j && s[i][j] == '.'; j--) {
while (H < T && f[w - 1][i][Q[T]] + Q[T] < f[w - 1][i][j] + j) T--;
Q[++T] = j;
while (H < T && Q[H + 1] > min(st, j + R[w] - L[w] + 1)) H++;
f[w][i][j] = f[w - 1][i][Q[H + 1]] + Q[H + 1] - j;
}
}
}
void pU(int w) {
int i, j; for (j = 1; j <= m; j++) for (i = 1; i <= n;) {
for (; i <= n && s[i][j] == 'x'; i++) f[w][i][j] = -INF; H = T = 0;
int st = i; for (; i <= n && s[i][j] == '.'; i++) {
while (H < T && f[w - 1][Q[T]][j] - Q[T] < f[w - 1][i][j] - i) T--;
Q[++T] = i;
while (H < T && Q[H + 1] < max(st, i - R[w] + L[w] - 1)) H++;
f[w][i][j] = f[w - 1][Q[H + 1]][j] + i - Q[H + 1];
}
}
}
void pD(int w) {
int i, j; for (j = 1; j <= m; j++) for (i = n; i;) {
for (; i && s[i][j] == 'x'; i--) f[w][i][j] = -INF; H = T = 0;
int st = i; for (; i && s[i][j] == '.'; i--) {
while (H < T && f[w - 1][Q[T]][j] + Q[T] < f[w - 1][i][j] + i) T--;
Q[++T] = i;
while (H < T && Q[H + 1] > min(st, i + R[w] - L[w] + 1)) H++;
f[w][i][j] = f[w - 1][Q[H + 1]][j] + Q[H + 1] - i;
}
}
}
int main() {
int i, j; n = read(); m = read(); X = read(); Y = read(); K = read();
for (i = 1; i <= n; i++) scanf("%s", s[i] + 1);
for (i = 1; i <= K; i++) L[i] = read(), R[i] = read(), dir[i] = read();
for (i = 1; i <= n; i++) for (j = 1; j <= m; j++)
f[0][i][j] = -INF; f[0][X][Y] = 0;
for (i = 1; i <= K; i++) switch(dir[i]) {
case 1: pD(i); break;
case 2: pU(i); break;
case 3: pR(i); break;
case 4: pL(i); break;
}
int ans = -INF; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++)
ans = max(ans, f[K][i][j]); cout << ans << endl;
return 0;
}