11.1 微分方程的基本概念
- 基本概念:
- 微分方程:含有未知函数的导数或微分的方程
- 常微分方程:含一元函数及其导函数
- 偏微分方程:含多元函数及其偏导数
- nnn阶常微分方程:F(x,y,y′,...,y(n))=0F(x,y,y',...,y^{(n)})=0F(x,y,y′,...,y(n))=0
- 通解:解中含有nnn个任意常数(其中nnn为微分方程阶数)
- 初始条件:用来确定任意常数的条件
- 特解:不含常数的解(一般由初始条件确定)
通解不一定包含一切特解。奇解:不包含于通解的特解
例:微分方程y2(x)+y′2(x)=1y^2(x)+y'^2(x)=1y2(x)+y′2(x)=1,通解为y=sin(x+C)y=\sin(x+C)y=sin(x+C),但y(x)=1y(x)=1y(x)=1为一个特解,不属于通解
- 微分方程:含有未知函数的导数或微分的方程
11.2 一阶微分方程
-
变量分离的方程:dydx=f(x)⋅g(y)\dfrac{dy}{dx} =f(x)\cdot g(y)dxdy=f(x)⋅g(y)(右式为乘积形式)
- 解法:两端积分
∫dyg(y)=∫f(x) dx \int\dfrac{dy}{g(y)}=\int f(x)\,dx ∫g(y)dy=∫f(x)dx
例:\color{blue} 特解不属于通解的情况。。。。。
- 解法:两端积分
-
几类可化为变量分离方程:
- 形如dydx=f(ax+by+c)(∗)\dfrac{dy}{dx}=f(ax+by+c)\qquad\color{red}(*)dxdy=f(ax+by+c)(∗)
令z=ax+by+cz=ax+by+cz=ax+by+c,得 dzdx=a+bdydx=a+bf(z)\dfrac{dz}{dx}=a+b\dfrac{dy}{dx}=a+bf(z)dxdz=a+bdxdy=a+bf(z). - 齐次微分方程:形如dydx=ϕ(yx)\dfrac{dy}{dx}=\phi(\dfrac{y}{x})dxdy=ϕ(xy)
令z=yxz=\dfrac{y}{x}z=xy,得 z+xdzdx=dydx=ϕ(z)z+x\dfrac{dz}{dx}=\dfrac{dy}{dx}=\phi(z)z+xdxdz=dxdy=ϕ(z). - 可化为齐次微分方程:形如dydx=f(a1x+b1y+c1a2x+b2y+c2)\dfrac{dy}{dx}=f\left(\dfrac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}\right)dxdy=f(a2x+b2y+c2a1x+b1y+c1)
当c1=c2=0c_1=c_2=0c1=c2=0,为齐次方程
当c1,c2c_1,c_2c1,c2不全为000:- 1).Δ=∣a1b1a2b2∣≠0\color{fuchsia}\Delta=\begin{vmatrix}a_1&b_1\\a_2&b_2 \end{vmatrix}\ne0Δ=∣∣∣∣a1a2b1b2∣∣∣∣=0时:因为{a1x+b1y+c1=0a2x+b2y+c2=0\begin{cases}a_1x+b_1y+c_1=0\\a_2x+b_2y+c_2=0 \end{cases}{a1x+b1y+c1=0a2x+b2y+c2=0有唯一解(x0,y0)(x_0,y_0)(x0,y0).
令 u=x−x0,v=y−y0u=x-x_0, v=y-y_0u=x−x0,v=y−y0,原式可化为dydx=f(a1u+b1ua2v+b2v)\dfrac{dy}{dx}=f\left(\dfrac{a_1u+b_1u}{a_2v+b_2v}\right)dxdy=f(a2v+b2va1u+b1u),为齐次方程 - 2).Δ=∣a1b1a2b2∣=0\color{fuchsia}\Delta=\begin{vmatrix}a_1&b_1\\a_2&b_2 \end{vmatrix}=0Δ=∣∣∣∣a1a2b1b2∣∣∣∣=0时:
- (i).若a1=a2=0或b1=b2=0\color{red}a_1=a_2=0或b_1=b_2=0a1=a2=0或b1=b2=0:原式可化为dydx=F(x)=f(a1x+c1a2x+c2)\dfrac{dy}{dx}=F(x)=f(\dfrac{a_1x+c_1}{a_2x+c_2})dxdy=F(x)=f(a2x+c2a1x+c1).
- (ii).若a1=b1=0或a2=b2=0\color{red}a_1=b_1=0或a_2=b_2=0a1=b1=0或a2=b2=0:
原式可化为方程(∗)(*)(∗):dydx=f(c1a2x+b2y+c2)\dfrac{dy}{dx}=f\left(\dfrac{c_1}{a_2x+b_2y+c_2}\right)dxdy=f(a2x+b2y+c2c1)或dydx=f(a1x+b1y+c1c2)\dfrac{dy}{dx}=f\left(\dfrac{a_1x+b_1y+c_1}{c_2}\right)dxdy=f(c2a1x+b1y+c1) - (iii).若a1≠0,b1≠0\color{red}a1\ne0,b_1\ne0a1=0,b1=0:令k=a1a2=b1b2,z=a1x+b1yk=\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2},z=a_1x+b_1yk=a2a1=b2b1,z=a1x+b1y,得 dzdx=a1+b1dydx=a1+b1f(z+c1kz+c2)\dfrac{dz}{dx}=a_1+b_1\dfrac{dy}{dx}=a_1+b_1f(\dfrac{z+c_1}{kz+c_2})dxdz=a1+b1dxdy=a1+b1f(kz+c2z+c1).
- 1).Δ=∣a1b1a2b2∣≠0\color{fuchsia}\Delta=\begin{vmatrix}a_1&b_1\\a_2&b_2 \end{vmatrix}\ne0Δ=∣∣∣∣a1a2b1b2∣∣∣∣=0时:因为{a1x+b1y+c1=0a2x+b2y+c2=0\begin{cases}a_1x+b_1y+c_1=0\\a_2x+b_2y+c_2=0 \end{cases}{a1x+b1y+c1=0a2x+b2y+c2=0有唯一解(x0,y0)(x_0,y_0)(x0,y0).
- 变量代换:u=x+y,u=xyu=x+y,u=xyu=x+y,u=xy等
例:求微分方程(x−ycosyx) dx+xcosyx dy=0的解\color{blue}求微分方程(x-y\cos\dfrac{y}{x})\,dx+x\cos\dfrac{y}{x}\,dy = 0的解求微分方程(x−ycosxy)dx+xcosxydy=0的解
令u=yx,则dy=xdu+udx原式得:(1−ucosu)dx+cosu(xdu+udx)=0cosu du=−dxx∴sinyx=−lnx+C. 令u=\dfrac{y}{x},则dy=xdu+udx\\ 原式得:(1-u\cos u)dx+\cos u(xdu+udx)=0\\ \cos u\,du=-\dfrac{dx}{x}\\ \therefore \sin \dfrac{y}{x}=-\ln x +C. 令u=xy,则dy=xdu+udx原式得:(1−ucosu)dx+cosu(xdu+udx)=0cosudu=−xdx∴sinxy=−lnx+C.
例:xy′−y−y2−x2=0\color{blue}xy'-y-\sqrt{y^2-x^2}=0xy′−y−y2−x2=0
当x>0时当x<0时 当x>0时\\ 当x<0时\\ 当x>0时当x<0时
例:y′=y2−2xy−x2y2+2xy−x2,y(1)=1\color{blue}y'=\dfrac{y^2-2xy-x^2}{y^2+2xy-x^2},y(1)=1y′=y2+2xy−x2y2−2xy−x2,y(1)=1.
- 形如dydx=f(ax+by+c)(∗)\dfrac{dy}{dx}=f(ax+by+c)\qquad\color{red}(*)dxdy=f(ax+by+c)(∗)
-
一阶线性微分方程:dydx+P(x)y=Q(x)\dfrac{dy}{dx}+P(x)y=Q(x)dxdy+P(x)y=Q(x)(次数均为一次)
- 线性齐次微分方程(Q(x)≡0Q(x)\equiv 0Q(x)≡0): 通解为y=Ce−∫P(x) dx\color{red}y=Ce^{-\int P(x)\,dx}y=Ce−∫P(x)dx
证:分离变量法 - 线性非齐次微分方程:通解为y=e−∫P(x) dx[∫Q(x)e∫P(x) dx dx+C]\color{red}y=e^{-\int P(x)\,dx}\left[\int Q(x)e^{\int P(x)\,dx}\,dx+C \right]y=e−∫P(x)dx[∫Q(x)e∫P(x)dxdx+C].(非齐次方程的通解===非齐次方程的特解+++齐次方程的通解)
证:常数变易法
- 线性齐次微分方程(Q(x)≡0Q(x)\equiv 0Q(x)≡0): 通解为y=Ce−∫P(x) dx\color{red}y=Ce^{-\int P(x)\,dx}y=Ce−∫P(x)dx
-
伯努利(Bernoulli)微分方程:dydx+P(x)y=Q(x)yn (n≠0,1)\dfrac{dy}{dx}+P(x)y=Q(x)y^n\;(n\ne0,1)dxdy+P(x)y=Q(x)yn(n=0,1)
- 令u=y1−nu=y^{1-n}u=y1−n,则u′=(1−n)y−ny′u'=(1-n)y^{-n}y'u′=(1−n)y−ny′,得线性方程u′+(1−n)P(x)u=(1−n)Q(x)\color{red}u'+(1-n)P(x)u=(1-n)Q(x)u′+(1−n)P(x)u=(1−n)Q(x)
-
全微分方程:一阶微分方程P(x,y) dx+Q(x,y) dy=0P(x,y)\,dx+Q(x,y)\,dy=0P(x,y)dx+Q(x,y)dy=0可被称为全微分方程 ⟺ \iff⟺ 若存在u(x,y)u(x,y)u(x,y),使得u(x,y)=P(x,y) dx+Q(x,y) dyu(x,y)=P(x,y)\,dx+Q(x,y)\,dyu(x,y)=P(x,y)dx+Q(x,y)dy
- 结论:若∂P∂y=∂Q∂x,(x,y)∈D\color{red}\dfrac{\partial P}{\partial y}=\dfrac{\partial Q}{\partial x},(x,y)\in D∂y∂P=∂x∂Q,(x,y)∈D,则存在u(x,y)u(x,y)u(x,y) ,即通解
- 几何意义:切平面纵坐标增量为000
例:求方程2xy3dx+y2−3x2y4dy=0的通解\color{blue}求方程\dfrac{2x}{y^3}dx+\dfrac{y^2-3x^2}{y^4}dy=0的通解求方程y32xdx+y4y2−3x2dy=0的通解
解:
∵∂P∂y=−6xy4=∂Q∂x,∴是全微分方程法一:LHS=1y2dy+(2xy3dx−3x2y4dy)=d(−1y)+d(x2y3)=d(−1y+x2y3)∴−1y+x2y3=C.法二:u(x,y)=∫0x2xy3dx=x2y3+ϕ(y)u(x,y)=∫0yy2−3x2y4dy=−1y+x2y3.得ϕ(y)=−1y,故通积分−1y+x2y3=C \because \dfrac{\partial P}{\partial y}= -\dfrac{6x}{y^4} =\dfrac{\partial Q}{\partial x},\therefore 是全微分方程\\ 法一:LHS=\dfrac{1}{y^2}dy+(\dfrac{2x}{y^3}dx-\dfrac{3x^2}{y^4}dy)=d(-\dfrac{1}{y})+d(\dfrac{x^2}{y^3})=d(-\dfrac{1}{y}+\dfrac{x^2}{y^3})\\ \therefore -\dfrac{1}{y}+\dfrac{x^2}{y^3}=C.\\ 法二:u(x,y)=\int_0^x \dfrac{2x}{y^3}dx= \dfrac{x^2}{y^3}+\color{red}\phi(y)\\ u(x,y)=\int_0^y \dfrac{y^2-3x^2}{y^4}dy=-\dfrac{1}{y}+\dfrac{x^2}{y^3}.\\ 得\phi(y)=-\dfrac{1}{y},故通积分 -\dfrac{1}{y}+\dfrac{x^2}{y^3}=C ∵∂y∂P=−y46x=∂x∂Q,∴是全微分方程法一:LHS=y21dy+(y32xdx−y43x2dy)=d(−y1)+d(y3x2)=d(−y1+y3x2)∴−y1+y3x2=C.法二:u(x,y)=∫0xy32xdx=y3x2+ϕ(y)u(x,y)=∫0yy4y2−3x2dy=−y1+y3x2.得ϕ(y)=−y1,故通积分−y1+y3x2=C - 积分因子:对于非全微分方程M(x,y)dx+N(x,y)dy=0M(x,y)dx+N(x,y)dy=0M(x,y)dx+N(x,y)dy=0,若存在μ(x,y)≠0\mu(x,y)\ne0μ(x,y)=0,使得μMdx+μNdx=0\mu Mdx+\mu Ndx=0μMdx+μNdx=0是全微分方程,则μ\muμ为方程的积分因子
由∂(μP)∂y=∂(μQ)∂x\dfrac{\partial(\mu P)}{\partial y}=\dfrac{\partial(\mu Q)}{\partial x}∂y∂(μP)=∂x∂(μQ),得μ(∂P∂y−∂Q∂x)=Q∂μ∂x−P∂μ∂y\mu(\dfrac{\partial P}{\partial y}-\dfrac{\partial Q}{\partial x})=Q\dfrac{\partial \mu}{\partial x}-P\dfrac{\partial \mu}{\partial y}μ(∂y∂P−∂x∂Q)=Q∂x∂μ−P∂y∂μ
11.3 二阶微分方程
- 特殊二阶微分方程:
- f(x,y′,y′′)=0f({\color{red}x},y',y'')=0f(x,y′,y′′)=0:令u=y′\color{red}u=y'u=y′,化为f(x,u,u′)=0f(x,u,u')=0f(x,u,u′)=0
例:求xy(5)−y(4)=0通解\color{blue}求xy^{(5)}-y^{(4)}=0通解求xy(5)−y(4)=0通解
令z=y(4),xz′−z=0得y(4)=z=C1x. 令z=y^{(4)},xz'-z=0得y^{(4)}=z=C_1x. 令z=y(4),xz′−z=0得y(4)=z=C1x. - f(y,y′,y′′)=0f({\color{red}y},y',y'')=0f(y,y′,y′′)=0:令u=y′\color{red}u=y'u=y′,化为f(y,u,ududy)=0f(y,u,u\dfrac{du}{dy})=0f(y,u,udydu)=0
例:求xyy′′−xy′2=yy′通解\color{blue}求xyy''-xy'^2=yy'通解求xyy′′−xy′2=yy′通解
两边同除以y2:x(yy′′−y′2y2)=y′y令z=y′y,xz′=zy′y=z=C1x得y=e12x2+C. 两边同除以y^2:x(\dfrac{yy''-y'^2}{y^2})=\dfrac{y'}{y}\\ 令z=\dfrac{y'}{y},xz'=z\\ \dfrac{y'}{y}=z=C_1x\qquad得y=e^{{1\over 2} x^2+C}. 两边同除以y2:x(y2yy′′−y′2)=yy′令z=yy′,xz′=zyy′=z=C1x得y=e21x2+C.
- f(x,y′,y′′)=0f({\color{red}x},y',y'')=0f(x,y′,y′′)=0:令u=y′\color{red}u=y'u=y′,化为f(x,u,u′)=0f(x,u,u')=0f(x,u,u′)=0
- 二阶线性微分方程:y′′+P1(x)y′+P2(x)y=f(x)y''+P_1(x)y'+P_2(x)y=f(x)y′′+P1(x)y′+P2(x)y=f(x)
- 性质(解的结构):
- 若y1,y2y_1,y_2y1,y2为线性齐次方程的解,则y=C1y1+C2y2y=C_1y_1+C_2y_2y=C1y1+C2y2也为解
- 只有线性齐次方程的解y1,y2y_1,y_2y1,y2线性无关时,齐次方程的通解才为y=C1y1+C2y2y=C_1y_1+C_2y_2y=C1y1+C2y2.
- 线性非齐次方程中,非齐次的特解y∗(x)+y^*(x)+y∗(x)+对应齐次时的通解y1(x)=y_1(x)=y1(x)=非齐次的通解Y=y∗(x)+y1(x)Y=y^*(x)+y_1(x)Y=y∗(x)+y1(x).
- 解的叠加原理一(实数):非齐次方程中,f1(x)f_1(x)f1(x)对应的解y1+y_1+y1+f2(x)f_2(x)f2(x)对应的解y2=f1(x)+f2(x)y_2=f_1(x)+f_2(x)y2=f1(x)+f2(x)对应的解y1+y2y_1+y_2y1+y2.
- 解的叠加原理二(虚数):非齐次方程中,f1(x)f_1(x)f1(x)对应的解y1+y_1+y1+f2(x)f_2(x)f2(x)对应的解y2×i=f1(x)+if2(x)y_2\times i=f_1(x)+if_2(x)y2×i=f1(x)+if2(x)对应的解y1+iy2y_1+iy_2y1+iy2.
- 常系数微分方程:y(n)+p1y(n−1)+p2y(n−2)+...+pny=f(x)y^{(n)}+p_1y^{(n-1)}+p_2y^{(n-2)}+...+p_ny=f(x)y(n)+p1y(n−1)+p2y(n−2)+...+pny=f(x)
- 222阶齐次方程(只需求齐次方程两个线性无关的特解):y′′+py′+qy=0y''+py'+qy=0y′′+py′+qy=0
λ2+pλ+q=0\lambda^2+p\lambda+q=0λ2+pλ+q=0为特征方程,λ=−p±p2−4q2\lambda=\dfrac{-p\pm\sqrt{p^2-4q}}{2}λ=2−p±p2−4q为特征根- 若p2−4q>0\color{fuchsia}p^2-4q>0p2−4q>0,则y1=eλ1x,y2=eλ2xy_1=e^{\lambda_1x},y_2=e^{\lambda_2x}y1=eλ1x,y2=eλ2x为两线性无关的不同特解,故通解为y=C1eλ1x+C2eλ2x\color{red}y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}y=C1eλ1x+C2eλ2x.
- 若p2−4q=0\color{fuchsia}p^2-4q=0p2−4q=0(二重根),则y1=eλ1xy_1=e^{\lambda_1x}y1=eλ1x为一特解。令u(x)=y2y1u(x)=\dfrac{y_2}{y_1}u(x)=y1y2,可得u′′(x)=0 ⟺ y1,y2u''(x)=0\iff y_1,y_2u′′(x)=0⟺y1,y2线性相关。记y2=xeλ1xy_2=xe^{\lambda_1x}y2=xeλ1x,故通解为y=C1eλ1x+C2xeλ1x\color{red}y=C_1e^{\lambda_1x}+C_2xe^{\lambda_1x}y=C1eλ1x+C2xeλ1x.
- 若p2−4q<0\color{fuchsia}p^2-4q<0p2−4q<0,则λ1=α+iβ,λ2=α−iβ\lambda_1=\alpha+i\beta,\lambda_2=\alpha-i\betaλ1=α+iβ,λ2=α−iβ,其中α=−p2,β=4q−p22\alpha=-\dfrac{p}{2},\beta=\dfrac{\sqrt{4q-p^2}}{2}α=−2p,β=24q−p2。欧拉公式有e(α±iβ)x=eαx(cosβx±isinβx)e^{(\alpha\pm i\beta)x}=e^{\alpha x}(\cos \beta x\pm i\sin \beta x)e(α±iβ)x=eαx(cosβx±isinβx)。则y1=eλ1x,y2=eλ2xy_1=e^{\lambda_1x},y_2=e^{\lambda_2x}y1=eλ1x,y2=eλ2x为两线性无关的不同特解,故通解为y=C1e(α+iβ)x+C2e(α−iβ)x=eαx(A1cosβx+A2sinβx)\color{red}y=C_1e^{(\alpha+i\beta)x}+C_2e^{(\alpha-i\beta)x}=e^{\alpha x}(A_1\cos \beta x+A_2\sin \beta x)y=C1e(α+iβ)x+C2e(α−iβ)x=eαx(A1cosβx+A2sinβx).
- nnn阶齐次方程:rn+p1rn−1+...+pn−1r+pn=0r^n+p_1r^{n-1}+...+p_{n-1}r+p_n=0rn+p1rn−1+...+pn−1r+pn=0为特征方程
- 若是kkk重根rrr,通项为(C1+C2x+...+Ckxk−1)erx(C_1+C_2x+...+C_kx^{k-1})e^{rx}(C1+C2x+...+Ckxk−1)erx.
- 若是kkk重共轭复根α±jβ\alpha\pm j\betaα±jβ,通项为[(C1+C2x+...+Ckxk−1)cosβx+(D1+D2x+...+Dkxk−1)sinβx]eαx[(C_1+C_2x+...+C_kx^{k-1})\cos \beta x+(D_1+D_2x+...+D_{k}x^{k-1})\sin\beta x]e^{\alpha x}[(C1+C2x+...+Ckxk−1)cosβx+(D1+D2x+...+Dkxk−1)sinβx]eαx.
例:求y(5)+y(4)+2y(3)+2y′′+y′+y=0的通解\color{blue}求y^{(5)}+y^{(4)}+2y^{(3)}+2y''+y'+y=0的通解求y(5)+y(4)+2y(3)+2y′′+y′+y=0的通解
特征方程为r5+r4+2r3+2r2+r+1=0特征根为r1=−1,r2=r3=j,r4=r5=−j通解为y=C1e−x+(C2+C3x)cosx+(C4+C5x)sinx 特征方程为r^5+r^4+2r^3+2r^2+r+1=0\\ 特征根为r_1=-1,r_2=r_3=j,r_4=r_5=-j\\ 通解为y=C_1e^{-x}+(C_2+C_3x)\cos x+(C_4+C_5x)\sin x 特征方程为r5+r4+2r3+2r2+r+1=0特征根为r1=−1,r2=r3=j,r4=r5=−j通解为y=C1e−x+(C2+C3x)cosx+(C4+C5x)sinx
- 2阶非齐次方程(只需求非齐次方程的特解和齐次方程的通解):y′′+py′+qy=f(x)y''+py'+qy=f(x)y′′+py′+qy=f(x)
易知f(x)f(x)f(x)常见形式f(x)={ϕ(x)ϕ(x)erxϕ(x)eαx(A1cosβx+A2sinβx)f(x)=\begin{cases}\phi(x)\\\phi(x)e^{rx}\\\phi(x)e^{\alpha x}(A_1\cos\beta x+A_2\sin\beta x) \end{cases}f(x)=⎩⎪⎨⎪⎧ϕ(x)ϕ(x)erxϕ(x)eαx(A1cosβx+A2sinβx)均可表示为f(x)=ϕ(x)erx=ϕ(x)e(α+iβ)xf(x)=\phi(x)e^{rx}=\phi(x)e^{(\alpha+i\beta)x}f(x)=ϕ(x)erx=ϕ(x)e(α+iβ)x,故讨论ϕ(x)\phi(x)ϕ(x)为mmm次多项式,rrr为复常数时的情况。
待定系数法:设y(x)=Q(x)erxy(x)=Q(x)e^{rx}y(x)=Q(x)erx,其中Q(x)Q(x)Q(x)为mmm次多项式,代入方程得Q′′(x)+(2r+p)Q′(x)+(r2+pr+q)Q(x)≡ϕ(x)Q''(x)+(2r+p)Q'(x)+(r^2+pr+q)Q(x)\equiv\phi(x)Q′′(x)+(2r+p)Q′(x)+(r2+pr+q)Q(x)≡ϕ(x).- 若r2+pr+q≠0\color{fuchsia}r^2+pr+q\ne0r2+pr+q=0,此时y(x)=Q(x)erxy(x)=\color{red}Q(x)e^{rx}y(x)=Q(x)erx.
- 若r2+pr+q=0,2r+p≠0\color{fuchsia}r^2+pr+q=0,2r+p\ne0r2+pr+q=0,2r+p=0,此时y(x)=xQ(x)erxy(x)=\color{red}xQ(x)e^{rx}y(x)=xQ(x)erx.
- 若r2+pr+q=0,2r+p=0\color{fuchsia}r^2+pr+q=0,2r+p=0r2+pr+q=0,2r+p=0,此时y(x)=x2Q(x)erxy(x)=\color{red}x^2Q(x)e^{rx}y(x)=x2Q(x)erx.
例:求解方程y′′−y=3e2x+4xsinx的通解\color{blue}求解方程y''-y=3e^{2x}+4x\sin x的通解求解方程y′′−y=3e2x+4xsinx的通解
首先分解为{y′′−y=3e2x(∗)y′′−y=4xsinx(∗∗)特征方程λ2−1=0有两不同实根λ1=1,λ2=−1故对应齐次方程的特解为C1ex+C2e−x.对(∗)求特解:设y1=ke2x,代入得k=1.对(∗∗)求特解:先考虑方程y′′−y=4xeix,设y2=(ax+b)eix,代入得a=−2,b=−2i.故y2的虚部为y=−2(cosx+sinx).综上所求原方程的通解为y=C1ex+C2e−x+e2x−2(cosx+sinx). 首先分解为 \begin{cases}\begin{aligned}&y''-y=3e^{2x}&& (*)\\&y''-y=4x\sin x&&(**)\\ \end{aligned}\end{cases}\\ 特征方程\lambda^2-1=0有两不同实根\lambda_1=1,\lambda_2=-1\\ 故对应齐次方程的特解为C_1e^x+C_2e^{-x}.\\ 对(*)求特解:设y_1=ke^{2x},代入得k=1.\\ 对(**)求特解:先考虑方程y''-y=4xe^{ix},设y_2=(ax+b)e^{ix},代入得a=-2,b=-2i.\\ 故y_2的虚部为y=-2(\cos x+\sin x).\\ 综上所求原方程的通解为y=C_1e^x+C_2e^{-x}+e^{2x}-2(\cos x+\sin x). 首先分解为{y′′−y=3e2xy′′−y=4xsinx(∗)(∗∗)特征方程λ2−1=0有两不同实根λ1=1,λ2=−1故对应齐次方程的特解为C1ex+C2e−x.对(∗)求特解:设y1=ke2x,代入得k=1.对(∗∗)求特解:先考虑方程y′′−y=4xeix,设y2=(ax+b)eix,代入得a=−2,b=−2i.故y2的虚部为y=−2(cosx+sinx).综上所求原方程的通解为y=C1ex+C2e−x+e2x−2(cosx+sinx).
- 222阶齐次方程(只需求齐次方程两个线性无关的特解):y′′+py′+qy=0y''+py'+qy=0y′′+py′+qy=0
- 性质(解的结构):
本文详细介绍了微分方程的基础概念,包括常微分方程、偏微分方程和各类方程的解法,如变量分离、齐次与非齐次微分方程,以及特殊二阶微分方程的处理。重点讲解了线性微分方程、伯努利方程、全微分方程和特征根的应用。
1986

被折叠的 条评论
为什么被折叠?



