
Tensorflow
Xurui_Luo
这个作者很懒,什么都没留下…
展开
-
解决 ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)
既然说 paritially known,那就想办法直接告诉后台shape到底什么样tf.shape 就可以获取当前张量的shape样例代码class Sampling(layers.Layer): def call(self, inputs): z_mean, z_log_var = inputs batch = tf.shape(z_mean)[0] # 获取第一维 dim = tf.shape(z_mean)[1] # 获取第二维 epsilon = tf.原创 2021-04-17 13:41:43 · 2477 阅读 · 3 评论 -
Mac端,远程访问服务器的tensorboard
参考 http://www.siyuanblog.com/?p=115207服务器端起:tensorboard –logdir=/data/serve_output/ —port=6006Mac端重定向: ssh -L 16006:127.0.0.1:6006 user@hostname 本地 localhost:16006:127.0.0.1 打开原创 2020-11-10 14:54:59 · 421 阅读 · 0 评论 -
tensorboard报错:ValueError: Duplicate plugins for name projector`
转载 https://blog.youkuaiyun.com/jinbeibei0606/article/details/100771997原创 2020-10-22 15:18:00 · 346 阅读 · 0 评论 -
tensorflow, numpy axis dimension 简单快速理解
axis的取值个数等于矩阵的维度axis=i 表示第i维的数,按照i的变化进行相应操作,第i维对应位置的所有数,会最终变成1个数,故少了一个维度比如np.sum操作下面的例子假设了(4,3,2,3)维的矩阵,axis取值的顺序也就是(4,3,2,3)axis=0时,矩阵形状就变成(3,2,3)axis=1时,矩阵形状就变成(4,2,3)axis=2时,矩阵形状就变成(4,3,3)axis=3时,矩阵形状就变成(4,3,2)d = data = np.random.randint(0.原创 2020-10-19 14:23:25 · 248 阅读 · 0 评论 -
Mac 报错 ssl.SSLError:[SSL:CERTIFICATE_VERIFY_FAILED]
macOS:Mac OSX python ssl.SSLError:[SSL:CERTIFICATE_VERIFY_FAILED]证书验证失败/Applications/Python 3.7目录下,运行Install Certificates.command原创 2020-10-18 16:30:58 · 1085 阅读 · 0 评论 -
tf.keras.callbacks.EarlyStopping用法
tf.keras.callbacks.EarlyStopping( monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None, restore_best_weights=False)monitor:监控的数据接口。keras定义了如下的数据接口可以直接使用:acc(accuracy),测试集的正确率loss,测试集的损失函数(误差)val_acc(val_accuracy原创 2020-09-02 17:46:20 · 6874 阅读 · 3 评论 -
Tensorflow, colab, numpy, pandas, DataFrame等完整显示张量/行/列的方法
代码中添加np.set_printoptions(threshold=np.inf)原创 2020-08-20 12:12:16 · 880 阅读 · 0 评论 -
tf.clip_by_value
tf.clip_by_value(A, min, max):输入一个张量A,把A中的每一个元素的值都压缩在min和max之间。小于min的让它等于min,大于max的元素的值等于max。import tensorflow as tf;import numpy as np; A = np.array([[1,1,2,4], [3,4,8,5]]) with tf.Session() as sess: print(sess.run(tf.clip_by_value(A, 2, 5)))输.原创 2020-08-19 22:40:30 · 105 阅读 · 0 评论 -
tf.one_hot使用
就是将原来用一维表示的特征如:分类问题共7类,用一维表示就是0,1,2,3,4,5,6中的某个数字来表示某一类而one-hot就吧它们变成[[1. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0.] [0. 0. 0. 1. 0. 0. 0.] [0. 0. 0. 0. 1. 0. 0.] [0. 0. 0. 0. 0. 1. 0.] [0. 0. 0. 0. 0. 0. 1.]]具体代码样例:im原创 2020-08-15 22:07:26 · 152 阅读 · 0 评论 -
求分类问题的精确率accuracy 采用 tf.reduce_mean tf.cast tf.equal
import tensorflow as tfA = [1, 3, 4, 5, 6]B = [1, 3, 4, 3, 2]correct_prediction = tf.equal(A, B)with tf.Session() as sess: # print(sess.run(tf.equal(A, B))) print(sess.run(tf.equal(A, B))) print(sess.run(tf.cast(correct_prediction, tf.flo原创 2020-08-15 21:35:46 · 446 阅读 · 0 评论 -
tf.equal
tf.equal(A, B)是对比这两个矩阵或者向量的相等的元素,如果是相等的那就返回True,反正返回False,返回的值的矩阵维度和A是一样的import tensorflow as tfimport numpy as np A = [[1,3,4,5,6]]B = [[1,3,4,3,2]] with tf.Session() as sess: print(sess.run(tf.equal(A, B)))[[ True True True False False]].原创 2020-08-15 20:57:14 · 139 阅读 · 0 评论 -
tf.cast
tf.cast:用于改变某个张量的数据类型import tensorflow as tf;import numpy as np; A = tf.convert_to_tensor(np.array([[1,1,2,4], [3,4,8,5]])) with tf.Session() as sess: print(A.dtype) b = tf.cast(A, tf.float32) print(b.dtype)输出<dtype: 'int64'><dtype: '原创 2020-08-15 20:54:20 · 101 阅读 · 0 评论 -
tf.argmax
tf.argmax(vector, 1):返回的是vector中的最大值的索引号,如果vector是一个向量,那就返回一个值,如果是一个矩阵,那就返回一个向量,这个向量的每一个维度都是相对应矩阵行的最大值元素的索引号。import tensorflow as tfimport numpy as np A = [[1,3,4,5,6]]B = [[1,3,4], [2,4,1]] with tf.Session() as sess: print(sess.run(tf.argmax(.原创 2020-08-15 20:50:09 · 98 阅读 · 0 评论 -
解决报错 How to fix ‘Object arrays cannot be loaded when allow_pickle=False‘ for imdb.load_data() functi
解决原代码# Load the data set(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=NUM_WORDS, index_from=INDEX_FROM)修改后import numpy as np# save np.loadnp_load_old = np.load# modify the default parameters of np.loadnp.load = lambda *a,**原创 2020-08-04 21:36:19 · 198 阅读 · 0 评论 -
报错 mnist ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: u
参考在代码开头加上import requestsrequests.packages.urllib3.disable_warnings()import ssltry: _create_unverified_https_context = ssl._create_unverified_contextexcept AttributeError: # Legacy Python that doesn't verify HTTPS certificates by default原创 2020-08-01 16:32:56 · 773 阅读 · 0 评论