以下是一个使用 TensorFlow 实现带自注意力机制的卷积神经网络(Convolutional Neural Network, CNN)进行训练和预测的示例代码:
import tensorflow as tf
# 定义模型的超参数
learning_rate = 0.001
epochs = 10
batch_size = 32
# 构建带自注意力机制的卷积神经网络模型
def self_attention_cnn(input_shape, num_classes):
inputs = tf.keras.Input(shape=input_shape)
# 卷积层
x = tf.keras.layers.Conv1D(32, 3, activation='relu')(inputs)
x = tf.keras.layers.MaxPooling1D(2)(x)
x = tf.keras.layers.Conv1D(64, 3, activation='relu')(x)
x = tf.keras.layers.MaxPooling1D(2)(x)
x = tf.keras.layers.Conv1D(128, 3, activation='relu')(x)
x = tf.keras.layers.MaxPooling1D(2)(x)
# 自注意力机制
attention_weights = tf.keras.layers.Dense(1, activation='softmax')(x)
attention_weights = tf.keras.layers.Flatten()(attention_weights)
attention_weights = tf.keras.layers.Softmax()(attention_weights)
attention_weights = tf.keras.layers.Reshape((1, -1))(attention_weights)
x = tf.keras.layers.Dot(axes