这篇博文会不断搜集经典数学概念在计算机世界的实现,给自己做一个备忘录
所有知识来自网络搜索及翻阅书籍,原作者和地址会相应给出,版权属于原作者,感谢他们的付出!
1. 有限差分法求导(zddhub http://blog.youkuaiyun.com/zddblog/article/details/7521424)
有限差分法以变量离散取值后对应的函数值来近似微分方程中独立变量的连续取值。在有限差分方法中,我们放弃了微分方程中独立变量可以取连续值的特征,而关注独立变量离散取值后对应的函数值。但是从原则上说,这种方法仍然可以达到任意满意的计算精度。因为方程的连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值插值计算来近似得到。这种方法是随着计算机的诞生和应用而发展起来的。其计算格式和程序的设计都比较直观和简单,因而,它在计算数学中使用广泛。
有限差分法的具体操作分为两个部分:
1. 用差分代替微分方程中的微分,将连续变化的变量离散化,从而得到差分方程组的数学形式;
2. 求解差分方程组。
一个函数在x点上的一阶和二阶微商,可以近似地用它所临近的两点上的函数值的差分来表示。如对一个单变量函数f(x),x为定义在区间[a,b]上的连续变量,以步长将区间[a,b]离散化,我们会得到一系列节点,
然后求出f(x)在这些点上的近似值。显然步长h越小,近似解的精度就越好。与节点相邻的节点有
和
,所以在节点
处可构造如下形式的差值:
节点的一阶向前差分
节点的一阶向后差分
节点的一阶中心差分
本文使用中心差分法利用泰勒展开式求解第四节所使用的导数,现做如下推导。
函数f(x)在处的泰勒展开式为:
(4-8)
则,
(4-9)
(4-10)
忽略h平方之后的项,联立式(4-9),(4-10)解方程组得:
(4-11)
(4-12)
二元函数的泰勒展开式如下:
将展开后忽略次要项联立解方程得二维混合偏导如下:
(4-13)
综上,推导了4.1,4.2遇到的所有导数计算。同理,利用多元泰勒展开式,可得任意偏导的近似差分表示。
在图像处理中,取h=1,在图4.2所示的图像中,将像素0的基本中点导数公式整理如下:
2. 三阶矩阵求逆公式(zddhub http://blog.youkuaiyun.com/zddblog/article/details/7521424)
高阶矩阵的求逆算法主要有归一法和消元法两种,现将三阶矩阵求逆公式总结如下:
若矩阵
可逆,即时,
(4-14)
3. 矩阵求导(http://blog.sina.com.cn/s/blog_8eac0b290101fsqb.html http://www.cnblogs.com/huashiyiqike/p/3568922.html)
一些有用的技巧: