2018 ACM-ICPC World Finals Problem D.Gem Island
Solution
其实就是求 x 1 + x 2 + ⋯ + x n = n + d , x i ∈ [ 1 , d + 1 ] x_1+x_2+\dots +x_n=n+d,x_i\in[1,d+1] x1+x2+⋯+xn=n+d,xi∈[1,d+1]的前 r r r大的 x i x_i xi的和的期望,可以发现每一种不同的序列 { x i } \{x_i\} {xi}的出现概率都是一个定值: 1 ( n + d − 1 d ) \frac{1}{\binom{n+d-1}{d}} (dn+d−1)1
因此我们只需要求出所有方案的前
r
r
r大的
x
i
x_i
xi的和,再乘以这个概率即可。
于是我们沿用loj6077的
d
p
dp
dp做法,注意这里我们只考虑分裂产生的贡献,因此
x
i
x_i
xi的范围为
[
0
,
d
]
[0,d]
[0,d],求
x
1
+
x
2
+
⋯
+
x
n
=
d
x_1+x_2+\dots +x_n=d
x1+x2+⋯+xn=d的贡献和,最后的答案需要再加上
r
r
r,令
f
i
,
j
f_{i,j}
fi,j表示
i
i
i个人,分裂
j
j
j次的前
r
r
r大宝石个数和。
考虑这个序列中有
k
k
k个大于
0
0
0的数,它们都是被加若干个
1
1
1过来的,有
(
i
k
)
\binom{i}{k}
(ki)种方案选出这些数,本次分裂产生的贡献和为
m
i
n
(
k
,
r
)
∗
(
j
−
k
+
(
k
−
1
)
k
−
1
)
min(k,r)*\binom{j-k+(k-1)}{k-1}
min(k,r)∗(k−1j−k+(k−1)),而之后的贡献为
f
k
,
j
−
k
f_{k,j-k}
fk,j−k,因此有:
f
i
,
j
=
∑
k
(
i
k
)
(
m
i
n
(
k
,
r
)
(
j
−
1
k
−
1
)
+
f
k
,
j
−
k
)
f_{i,j}=\sum_k \binom{i}{k}(min(k,r)\binom{j-1}{k-1}+f_{k,j-k})
fi,j=k∑(ki)(min(k,r)(k−1j−1)+fk,j−k)
时间复杂度为 O ( n d ⋅ m i n ( n , d ) ) O(nd\cdot min(n,d)) O(nd⋅min(n,d))。
事实上本题还有 O ( d 2 + n d ) O(d^2+nd) O(d2+nd)求出所有 r r r的答案的容斥做法,但是比较复杂,且精度丢失比较严重,这里不作描述。
Code
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>
#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se second
using namespace std;
template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }
typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;
const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=1e9+7;
const int MAXN=1005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{
int f=1,x=0; char c=getchar();
while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }
return x*f;
}
lod f[MAXN][MAXN],C[MAXN][MAXN];
void Init(int n)
{
for (int i=0;i<=n;i++) C[i][i]=C[i][0]=1;
for (int i=2;i<=n;i++)
for (int j=1;j<i;j++) C[i][j]=C[i-1][j-1]+C[i-1][j];
}
signed main()
{
int n=read(),d=read(),r=read(); Init(n+d);
for (int i=1;i<=n;i++)
for (int j=0;j<=d;j++)
for (int k=0;k<=i&&k<=j;k++) f[i][j]+=C[i][k]*((j?C[j-1][k-1]:0)*min(k,r)+f[k][j-k]);
printf("%.11lf\n",(double)(f[n][d]/C[n+d-1][d]+r));
return 0;
}