CF768F. Barrels and boxes

这篇博客讲解了解决CF768F题目的技巧,核心是通过枚举WWW的连续段个数来确定FFF的划分方案,利用插板法计算组合并处理边界情况。

CF768F. Barrels and boxes

Solution

又一道据说是套路题。

核心在于枚举WWW的连续段个数为xxx
然后就能知道FFF的连续段个数为x−1,x,x+1x-1,x,x+1x1,x,x+1,可以用插板法求出任意把WWWxxx段的方案数,分xxx段每段WWW至少HHH个的方案数,以及任意把FFFx−1,x,x+1x-1,x,x+1x1,x,x+1段的方案数了。

(注意一些边界情况)

Code

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>

#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se second

using namespace std;

template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }

typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;

const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=1e9+7;
const int MAXN=600005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{
	int f=1,x=0; char c=getchar();
	while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
	while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }
	return x*f;
}
int n,fac[MAXN],inv[MAXN];
int quick_pow(int x,int y)
{
	int ret=1;
	for (;y;y>>=1)
	{
		if (y&1) ret=1ll*ret*x%mods;
		x=1ll*x*x%mods;
	}
	return ret;
}
void Init(int n)
{
	fac[0]=1;
	for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mods;
	inv[n]=quick_pow(fac[n],mods-2);
	for (int i=n-1;i>=0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mods;
}
ll C(int x,int y) { if (x<y||y<0) return 0; return 1ll*fac[x]*inv[y]%mods*inv[x-y]%mods; }
int upd(int x,int y) { return x+y>=mods?x+y-mods:x+y; }
signed main()
{
	int f=read(),w=read(),h=read(),ans1=0,ans2=0;
	if (!f) { puts(w<=h?"0":"1"); return 0; }
	if (!w) { puts("1"); return 0; }
	Init(f+w);
	for (int i=1;i<=w;i++) ans1=upd(ans1,C(w-1,i-1)*(C(f-1,i-2)+C(f-1,i-1)+C(f-1,i-1)+C(f-1,i))%mods);
	for (int i=1;i<=w&&w-h*i-1>=0;i++) ans2=upd(ans2,C(w-h*i-1,i-1)*(C(f-1,i-2)+C(f-1,i-1)+C(f-1,i-1)+C(f-1,i))%mods);
	printf("%lld\n",1ll*ans2*quick_pow(ans1,mods-2)%mods);
	return 0;
}
同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值