CF730F. Ber Patio
Solution
由于∑ai\sum{a_i}∑ai只有10510^5105,即除掉原有的bbb,代金券最多为10410^4104,因此我们令f[i][j]f[i][j]f[i][j]表示到了第iii天,靠现金获得的代金券共为jjj的最小现金和。
转移时枚举第i+1i+1i+1天用kkk张代金券,其他用现金的方法支付:
upmin(f[i+1][j+(a[i+1]−k)/10],f[i][j]+(a[i+1]−k))
upmin(f[i+1][j+(a[i+1]-k)/10],f[i][j]+(a[i+1]-k))
upmin(f[i+1][j+(a[i+1]−k)/10],f[i][j]+(a[i+1]−k))
显然kkk最大不超过min(ai2,b−(s[i]−f[i][j])+j)min(\frac{a_i}{2},b-(s[i]-f[i][j])+j)min(2ai,b−(s[i]−f[i][j])+j),能在3s3s3s内解决问题。
Code
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>
#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se second
#define int ll
using namespace std;
template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }
typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;
const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=998244353;
const int MAXN=300005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{
int f=1,x=0; char c=getchar();
while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }
return x*f;
}
vector<int> Ans;
int sum=0,f[2][10005],a[5005],s[5005],frm[5005][10005];
signed main()
{
int n=read(),b=read();
for (int i=1;i<=n;i++) s[i]=s[i-1]+(a[i]=read());
for (int i=0;i<=1;i++)
for (int j=0;j<=s[n]/10;j++) f[i][j]=INF;
f[0][0]=0;
int nw=0;
for (int i=0;i<n;i++)
{
nw^=1;
for (int j=0;j<=s[i]/10;j++) f[nw][j]=INF;
for (int j=0;j<=s[i]/10;j++)
for (int k=0;k<=min(a[i+1]/2,b-(s[i]-f[nw^1][j])+j);k++)
if (upmin(f[nw][j+(a[i+1]-k)/10],f[nw^1][j]+a[i+1]-k)) frm[i+1][j+(a[i+1]-k)/10]=k;
}
int ans=INF,Nw=0;
for (int i=0;i<=s[n]/10;i++) if (upmin(ans,f[nw][i])) Nw=i;
printf("%lld\n",ans);
for (int i=n;i>=1;i--) Ans.PB(frm[i][Nw]),Nw=Nw-((a[i]-frm[i][Nw])/10);
for (int i=n-1;i>=0;i--) printf("%lld ",Ans[i]);
return 0;
}
这篇博客介绍了一种动态规划算法,用于解决在有限的现金条件下,如何在购买商品时最小化现金支出的问题。算法通过维护一个二维数组f,表示在不同天数和拥有代金券数量下的最小现金花费,并利用转移方程进行状态更新。最终找到最优解并输出支付方案。
750

被折叠的 条评论
为什么被折叠?



