The Joseph's problem is notoriously known. For those who are not familiar with the original problem: from among n people, numbered 1, 2, ..., n, standing in circle every mth is going to be executed and only the life of the last remaining person will be saved. Joseph was smart enough to choose the position of the last remaining person, thus saving his life to give us the message about the incident. For example when n = 6 and m = 5 then the people will be executed in the order 5, 4, 6, 2, 3 and 1 will be saved.
Suppose that there are k good guys and k bad guys. In the circle the first k are good guys and the last k bad guys. You have to determine such minimal m that all the bad guys will be executed before the first good guy.
设 ai 是第i次踢掉的人在第i-1次踢掉后剩下的人中是第几个。那么
a(n) = [a(n-1)+m-1]mod(2k-n+1)
要求a(n) > k;n = 1,2,3,...,k
其中2k-n+1是第i-1次踢人后剩下的人数。
可以设计如下算法:
bool Joseph(int k, int m) // 这个算法确定对于给定的k,m是否满足上面的要求
{
int n;
for(n=1;n<=k;n++)
{
a = (a+m-1)%(k2-n+1);
if(a == 0) a = k2-n+1;
if(a<=k && a>=1) return false;
}
return true;
}然后,我们注意到,第一次踢的人是 m%2k,我们要求 m%2k > k,也就是 m = 2k*r+h,h>k,那么就可以设计如下的算法找出最小的m:
{
for(h=k+1;h<=2*k;h++)
{
m = 2*k*r+h;
if(Joseph(k,m)) goto end; // 找到m跳出
}
}
end:
本文探讨了一种约瑟夫问题的变体,即在特定条件下确保所有“坏人”在首个“好人”被淘汰前先行被淘汰的最小步长m。通过数学分析与算法设计,文章提供了解决这一问题的方法。

190





