Natural Image Matting

本文介绍了图像合成中的一项核心任务——抠图(matting),详细解释了如何从一张包含前景和背景的图片中分离出透明通道(alpha matte)的技术原理。文章探讨了不同抠图方法,包括贝叶斯抠图、泊松抠图、自然图像抠图闭合解及统一抠图与分割迭代优化等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Introduction

Composition Image I is generated by foreground and background with alpha matte

I = alpha*F + (1-alpha)*B

Matting is a problem to get alpha,F,B from a given image I.
User have to devide the image into three region: Foreground, Background and Unknown area. In foreground area, F = I, alpha = 1, B = 0; In background area, F = 0, alpha = 0, B = I. Our task is to get F,B,alpha in unknown area.
Consider a point P in unknown area, we have to first estimate F and B in point P.
After estimate F,B in point P, we estimate alpha by minimize a energy:

V = a*V(P) + b*V(P,Q) Q is 4-neighbor of P

V(P) = C - alpha*F - (1-alpha)*B^2

V(P,Q) = alpha(P) - alpha(Q)^2


Result:






Reference (All can be downloaded from Google)

* Y.Chuang, B.Curless, DH.Salesin, R.Szeliski, A Bayesian Approcah to Digital Matting.
* J.Sun, J.Jia, CK.Tang, HY.Shum, Poisson Matting.
* A.Levin, D.Lischinski, Y.Weiss, A Closed Form Solution to Natural Image Matting.
* J.Wang, MF.Cohen, An Iterative Optimization for Unified Image Segmentation and Matting.
 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值