MatrixPainting

本文介绍了一个特定的矩阵涂色问题,目标是最小化操作次数使9x9的黑白矩阵全部变为黑色。通过枚举所有可能的操作序列并验证其有效性来找到最优解。
MatrixPainting
Problem Statement

There is a matrix with 9 rows and 9 columns. Each cell of the matrix is either black or white. With a single repaint operation, you can repaint all the cells in a single row or column black if the row or column already contains at least 5 black cells. Your goal is to make all the cells in the matrix black using a minimal number of repaint operations.

You will be given a String[] matrix, where the jth character of the ith element represents the cell at row i, column j. Black cells will be written as '1' (one), and white cells will be written as '0' (zero). Return the minimal number of repaint operations required to make all the cells black, or -1 if this is impossible.
 
Definition
       
Class:    MatrixPainting
Method:    countRepaints
Parameters:    String[]
Returns:    int
Method signature:    int countRepaints(String[] matrix)
(be sure your method is public)
   
 
Constraints
-    matrix will contain exactly 9 elements.
-    Each element of matrix will contain exactly 9 characters.
-    Each element of matrix will consist of '0' and '1' characters only.
 
Examples
0)   
{"001111111",
 "011111111",
 "011111111",
 "011111111",
 "011111111",
 "101111111",
 "101111111",
 "101111111",
 "101111111"}

Returns: 3

First, you should repaint the first row. After that, you can repaint the first and the second column.

总共有9行9列,共218种repaint的方法。现在的任务是判断每种repaint是否能够满足要求

int valid(const vector<int>& way, vector<string>& matrix)
    
{
        
int i,k,a,b;
        
int sum,all;
        all 
= 0;
        
for(a=0;a<9;a++)
        
{
            
for(b=0;b<9;b++)
            
{
                
if(matrix[a][b] == '1') all += 1;
            }

        }

        
bool find;
        
int mm = 0;
        
if(all == 81return 0;
        
while(true)
        
{
            find 
= false;
            mm 
++;
            
for(i=0;i<way.size();i++)
            
{
                k 
= way[i]%9;
                
if(way[i]>9)//column
                {
                    sum 
= 0;
                    
for(a = 0; a < 9; a++)
                    
{
                        
if(matrix[a][k] == '1') sum += 1;
                    }

                    
if(sum >= 5 && sum < 9)
                    
{
                        find 
= true;
                        
for(a = 0;a < 9; a++)
                        
{
                            
if(matrix[a][k] == '0')
                            
{
                                matrix[a][k] 
= '1';
                                all 
++;
                            }

                        }

                    }

                    
if(all == 81return mm;
                }

                
else
                
{
                    sum 
= 0;
                    
for(a = 0; a < 9; a++)
                    
{
                        
if(matrix[k][a] == '1') sum += 1;
                    }

                    
if(sum >= 5 && sum < 9)
                    
{
                        find 
= true;
                        
for(a = 0;a < 9; a++)
                        
{
                            
if(matrix[k][a] == '0')
                            
{
                                matrix[k][a] 
= '1';
                                all 
++;
                            }

                        }

                    }

                    
if(all == 81return mm;
                }

                
if(find)
                
{
                    
break;
                }

            }

            
//cout<<"i"<<i<<"  "<<mm<<" "<<all<<endl;
            if(!find) return -1;
        }

    }

还需要一个函数生成所有可能的repaint行和列

    int allpaints(vector< vector<int> > & output)
    
{
        
int i,j,size;
        vector
<int> oneway;
        output.push_back(oneway);
        
        
for(i=1;i<=18;i++)
        
{
            vector
<int> way;
            size 
= output.size();
            
for(j=0;j<size;j++)
            
{
                way 
= output[j];
                output[j].push_back(i);
                output.push_back(way);
            }

        }

        
return 0;
    }

最终的函数实现如下:

    int countRepaints(vector<string> matrix)
    
{
        vector
<vector<int> > path;
        allpaints(path);
        
int i;
        
int size = 19;
        
int mm;
        
for(i=0;i<path.size();i++)
        
{
            
if(path[i].size() >= size) continue;
            vector
<string> M = matrix;
             mm 
= valid(path[i],M);
             
//cout<<"mm:"<<mm<<endl;
            if(mm >= 0)
            
{
                
if(size > mm) size = mm;
                
//cout<<size<<endl;
            }

        }

        
if(size == 19return -1;
        
return size;
    }
内容概要:本文围绕SecureCRT自动化脚本开发在毕业设计中的应用,系统介绍了如何利用SecureCRT的脚本功能(支持Python、VBScript等)提升计算机、网络工程等相关专业毕业设计的效率与质量。文章从关键概念入手,阐明了SecureCRT脚本的核心对象(如crt、Screen、Session)及其在解决多设备调试、重复操作、跨场景验证等毕业设计常见痛点中的价值。通过三个典型应用场景——网络设备配置一致性验证、嵌入式系统稳定性测试、云平台CLI兼容性测试,展示了脚本的实际赋能效果,并以Python实现的交换机端口安全配置验证脚本为例,深入解析了会话管理、屏幕同步、输出解析、异常处理和结果导出等关键技术细节。最后展望了低代码化、AI辅助调试和云边协同等未来发展趋势。; 适合人群:计算机、网络工程、物联网、云计算等相关专业,具备一定编程基础(尤其是Python)的本科或研究生毕业生,以及需要进行设备自动化操作的科研人员; 使用场景及目标:①实现批量网络设备配置的自动验证与报告生成;②长时间自动化采集嵌入式系统串口数据;③批量执行云平台CLI命令并分析兼容性差异;目标是提升毕业设计的操作效率、增强实验可复现性与数据严谨性; 阅读建议:建议读者结合自身毕业设计课题,参考文中代码案例进行本地实践,重点关注异常处理机制与正则表达式的适配,并注意敏感信息(如密码)的加密管理,同时可探索将脚本与外部工具(如Excel、数据库)集成以增强结果分析能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值