排列组合,递推,记忆化搜索(葛伦堡博物馆,LA 4123)

本文介绍了一种计算特定条件下字符串排列数量的方法,通过两种不同的算法实现:一种是利用组合数学公式直接计算,另一种则是采用记忆化搜索进行递推计算。文章详细解释了每种方法的状态定义与状态转移方程。

就是容易发现一共有numo=(n-4)/2个O,一共有numr=(n+4)/2个R。然后不能有两个O连在一起,头和尾同时为O也不行。就是插空法啦。现在C(numr+1,numo)-C(numr-1,numo-2)。意思是numr+1个空里选numo个减去numr-1个空里选numo-2个。即随便插空减去头和尾都是O的情况。由于(numr-numo)<5所以组合数不会很大,long long完全够用。然后n<4以及奇数的情况直接输出0就好了。


书上用的是递推,记忆化搜索。虽然麻烦但是有助于锻炼思维。


题目有一个隐含条件:不能有两个O连在一起     <==>     一定有4个R连在一起(头和尾也算连在一起)。


第一个方法是利用:     不能有两个O连在一起。

定义状态dp[i][j][p][q]。表示有i个R,j个O,头是p,尾是q。(0表示R,1表示O)。
这样就有状态转移方程

当q=1时dp[i][j][p][1]=dp[i][j-1][p][0]。表示如果最后一位是O那么只能由最后一位是R转移过来。

当q=0时dp[i][j][p][0]=dp[i-1][j][p][0]+dp[i-1][j][p][1]。表示如果最后一位是R,就能由最后一位是O或者R转移过来。

由于|i-j|<5,所以可以剪枝,直接返回0。

而递归边界就是dp[1][0][0][0]=dp[0][1][1][1]=1。以及(i<0||j<0)时直接返回0。

答案就是dp[numr][numo][0][0]+dp[numr][numo][1][0]+dp[numr][numo][0][1]。

由于有剪枝所以时间复杂度为O(n)。


第二个方法是利用:     一定有4个R连在一起。(我们知道头和尾连在一起也算,但是编程时这种情况当成只有3个R连在一起,具体情况如下)

定义状态dp[i][j][k]。表示有i个R,j对R,头是k,尾是R。

这样就有状态转移方程dp[i][j][k]=dp[i-1][j][k]+dp[i-1][j-1][k]。其中第一项表示在末尾添加OR,第二项表示在末尾添加R。

而递归边界就是dp[1][0][0]=dp[1][0][1]=1。分别表示OR和R。以及(i<0||j<0)时直接返回0。

答案就是dp[numr][4][0]+dp[numr][4][1]+dp[numr][3][0]。分别表示(头是R,尾是O),(头是O,尾是R),(头尾都是R)。


两个方法都可以用记忆化搜索来实现。


排列组合

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll L,kase;

ll C(ll m,ll n)
{
    n=min(n,m-n);
    ll ans=1;
    for(ll i=0;i<n;i++)
        ans*=(m-i);
    for(ll i=1;i<=n;i++)
        ans/=i;
    return ans;
}

ll solve(ll num)
{
    if(num<4||num&1) return 0;
    if(num==4) return 1;
    if(num==6) return 6;
    ll numo=(num-4)/2;
    ll numr=num-numo;
    return C(numr+1,numo)-C(numr-1,numo-2);
}

int main()
{
    while(scanf("%lld",&L)==1&&L)
        printf("Case %lld: %lld\n",++kase,solve(L));
    return 0;
}

方法一:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll L,kase;
ll dp[1010][1010][2][2];

ll f(ll n1,ll n2,ll p,ll q)
{
    ll& ans=dp[n1][n2][p][q];
    if(ans!=-1) return ans;
    if(q==1) return ans=!n2?0:f(n1,n2-1,p,0);
    else return ans=!n1?0:f(n1-1,n2,p,0)+f(n1-1,n2,p,1);
}

ll solve(ll num)
{
    if(num<4||num&1) return 0;
    ll numo=(num-4)/2;
    ll numr=(num+4)/2;
    return f(numr,numo,0,0)+f(numr,numo,1,0)+f(numr,numo,0,1);
}

int main()
{
    memset(dp,-1,sizeof(dp));
    dp[1][0][0][0]=dp[0][1][1][1]=1;
    while(scanf("%lld",&L)==1&&L)
        printf("Case %lld: %lld\n",++kase,solve(L));
    return 0;
}

方法二:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll L,kase;
ll dp[1010][1010][2][2];

ll f(ll n1,ll n2,ll p,ll q)
{
    ll& ans=dp[n1][n2][p][q];
    if(ans!=-1) return ans;
    if(abs(n1-n2)>5) return ans=0;
    if(q==1) return ans=!n2?0:f(n1,n2-1,p,0);
    else return ans=!n1?0:f(n1-1,n2,p,0)+f(n1-1,n2,p,1);
}

ll solve(ll num)
{
    if(num<4||num&1) return 0;
    ll numo=(num-4)/2;
    ll numr=(num+4)/2;
    return f(numr,numo,0,0)+f(numr,numo,1,0)+f(numr,numo,0,1);
}

int main()
{
    memset(dp,-1,sizeof(dp));
    dp[1][0][0][0]=dp[0][1][1][1]=1;
    while(scanf("%lld",&L)==1&&L)
        printf("Case %lld: %lld\n",++kase,solve(L));
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值