报错信息
RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed. Specify retain_graph=True when calling backward the first time.
方法一
网上大部分的方法是这样的,在backward()函数中添加参数retain_graph=True:
loss.backward(retain_graph=True)
但是我试过后还是会报出其他的问题。
方法二
我出现这个问题是发生在自定义循环神经网络时发生的,即将网络输出作为下一时刻的输入时出现的问题。
报错代码:
for idx, (u, x1, x2, x1_next, x2_next) in enumerate(train_loader):
if idx == 0:
x1_input = x1
x2_input = x2
output = net(u.to(device),
x1_input.to(device),
x2_input.to(device))
x1_input = output[:, 0]
x2_input = output[:, 1]
解决方法是将numpy.array类型作为中间变量,解决方法如下:
for idx, (u, x1, x2, x1_next, x2_next) in enumerate(train_loader):
if idx == 0:
x1_input = x1.data.numpy()
x2_input = x2.data.numpy()
output = net(u.to(device),
torch.from_numpy(x1_input).float().to(device),
torch.from_numpy(x2_input).float().to(device))
x1_input = output[:, 0].data.cpu().numpy()
x2_input = output[:, 1].data.cpu().numpy()
循环之前还应该有个x1_input 、x2_input的初始化,否则会报错(numpy.zeros)