2 x 2 STBC 空时分组码 解码 与 均衡

主要流程介绍(一组数据块示例【即两个OFDM数据块】)

1、四个SISO分析
Y 11 = [ X 1 H 11 , − X 2 ∗ H 11 ] + Z 11 Y_{11}=[X_1H_{11},-X^*_2H_{11}]+Z_{11} Y11=[X1H11,X2H11]+Z11
Y 12 = [ X 1 H 12 , − X 2 ∗ H 12 ] + Z 12 Y_{12}=[X_1H_{12},-X^*_2H_{12}]+Z_{12} Y12=[X1H12,X2H12]+Z12
Y 21 = [ X 2 H 21 , X 1 ∗ H 21 ] + Z 21 Y_{21}=[X_2H_{21},X^*_1H_{21}]+Z_{21} Y21=[X2H21,X1H21]+Z21
Y 22 = [ X 2 H 22 , X 1 ∗ H 22 ] + Z 22 Y_{22}=[X_2H_{22},X^*_1H_{22}]+Z_{22} Y22=[X2H22,X1H22]+Z22

1、 Y i j Y_{ij} Yij表示发射天线 i i i至接收天线 j j j的信号(两个相关时隙);
2、 X i X_i Xi为发送信号(频域)【未STBC编码之前】;
3、 H i j H_{ij} Hij表示发射天线 i i i至接收天线 j j j之间的多径信道频域矩阵;
4、 Z i j Z_{ij} Zij表示发射天线 i i i至接收天线 j j j之间的高斯白噪声,功率为 σ i j 2 \sigma_{ij}^2 σij2;
5、 ( ⋅ ) ∗ (\cdot)^* ()表示共轭。

2、MISO接收信号
R 1 = Y 11 + Y 21 = [ X 1 H 11 + X 2 H 21 , − X 2 ∗ H 11 + X 1 ∗ H 21 ] + Z 11 + Z 21 R_1=Y_{11}+Y_{21}=[X_1H_{11}+X_2H_{21},-X_2^*H_{11}+X_1^*H_{21}]+Z_{11}+Z_{21} R1=Y11+Y21=[X1H11+X2H21,X2H11+X1H21]+Z11+Z21
R 2 = Y 12 + Y 22 = [ X 1 H 12 + X 2 H 22 , − X 2 ∗ H 12 + X 1 ∗ H 22 ] + Z 12 + Z 22 R_2=Y_{12}+Y_{22}=[X_1H_{12}+X_2H_{22},-X_2^*H_{12}+X_1^*H_{22}]+Z_{12}+Z_{22} R2=Y12+Y22=[X1H12+X2H22,X2H12+X1H22]+Z12+Z22

R i R_i Ri表示第 i i i个接收天线接收到的信号

3、MISO分时隙表示
R 11 = X 1 H 11 + X 2 H 21 + Z 11 + Z 21 R_{11}=X_1H_{11}+X_2H_{21}+Z_{11}+Z_{21} R11=X1H11+X2H21+Z11+Z21
R 12 = − X 2 ∗ H 11 + X 1 ∗ H 21 + Z 11 + Z 21 R_{12}=-X_2^*H_{11}+X_1^*H_{21}+Z_{11}+Z_{21} R12=X2H11+X1H21+Z11+Z21
R 21 = X 1 H 12 + X 2 H 22 + Z 12 + Z 22 R_{21}=X_1H_{12}+X_2H_{22}+Z_{12}+Z_{22} R21=X1H12+X2H22+Z12+Z22
R 22 = − X 2 ∗ H 12 + X 1 ∗ H 22 + Z 12 + Z 22 R_{22}=-X_2^*H_{12}+X_1^*H_{22}+Z_{12}+Z_{22} R22=X2H12+X1H22+Z12+Z22

R i j R_{ij} Rij表示第 i i i个天线的第 j j j个时隙的接收信号。

4、MIMO-STBC解码

S 1 = R 11 H 11 ∗ + R 12 ∗ H 21 + R 21 H 12 ∗ + R 22 ∗ H 22 S_1=R_{11}H_{11}^*+R_{12}^*H_{21}+R_{21}H_{12}^*+R_{22}^*H_{22} S1=R11H11+R12H21+R21H12+R22H22

S 2 = R 11 H 21 ∗ − R 12 ∗ H 11 + R 21 H 22 ∗ − R 22 ∗ H 12 S_2=R_{11}H_{21}^*-R_{12}^*H_{11}+R_{21}H_{22}^*-R_{22}^*H_{12} S2=R11H21R12H11+R21H22R22H12

S i S_i Si表示解调得到的发射信号 X i X_i Xi

  • 进一步可以表示为:
    S 1 = X 1 ∑ i , j ∣ H i j ∣ 2 + ( Z 11 + Z 21 ) H 11 + ( Z 11 ∗ + Z 21 ∗ ) H 21 + ( Z 12 + Z 22 ) H 12 + ( Z 12 ∗ + Z 22 ∗ ) H 22 S_1=X_1\sum\limits_{i,j}|H_{ij}|^2+(Z_{11}+Z_{21})H_{11}+(Z_{11}^*+Z_{21}^*)H_{21}+(Z_{12}+Z_{22})H_{12}+(Z_{12}^*+Z_{22}^*)H_{22} S1=X1i,jHij2+(Z11+Z21)H11+(Z11+Z21)H21+(Z12+Z22)H12+(Z12+Z22)H22
    S 2 = X 2 ∑ i , j ∣ H i j ∣ 2 − ( Z 11 ∗ + Z 21 ∗ ) H 11 + ( Z 11 + Z 21 ) H 21 ∗ − ( Z 12 ∗ + Z 22 ∗ ) H 12 + ( Z 12 + Z 22 ) H 22 ∗ S_2=X_2\sum\limits_{i,j}|H_{ij}|^2-(Z_{11}^*+Z_{21}^*)H_{11}+(Z_{11}+Z_{21})H_{21}^*-(Z_{12}^*+Z_{22}^*)H_{12}+(Z_{12}+Z_{22})H_{22}^* S2=X2i,jHij2(Z11+Z21)H11+(Z11+Z21)H21(Z12+Z22)H12+(Z12+Z22)H22

  • 进一步化简:

S 1 = K X 1 + N 1 S_1=KX_1+N_1 S1=KX1+N1
S 2 = K X 2 + N 2 S_2=KX_2+N_2 S2=KX2+N2

1、 K = ∑ i , j ∣ H i j ∣ 2 K=\sum\limits_{i,j}|H_{ij}|^2 K=i,jHij2;
2、 N 1 = ( Z 11 + Z 21 ) H 11 + ( Z 11 ∗ + Z 21 ∗ ) H 21 + ( Z 12 + Z 22 ) H 12 + ( Z 12 ∗ + Z 22 ∗ ) H 22 N_1=(Z_{11}+Z_{21})H_{11}+(Z_{11}^*+Z_{21}^*)H_{21}+(Z_{12}+Z_{22})H_{12}+(Z_{12}^*+Z_{22}^*)H_{22} N1=(Z11+Z21)H11+(Z11+Z21)H21+(Z12+Z22)H12+(Z12+Z22)H22
3、 N 2 = − ( Z 11 ∗ + Z 21 ∗ ) H 11 + ( Z 11 + Z 21 ) H 21 ∗ − ( Z 12 ∗ + Z 22 ∗ ) H 12 + ( Z 12 + Z 22 ) H 22 ∗ N_2=-(Z_{11}^*+Z_{21}^*)H_{11}+(Z_{11}+Z_{21})H_{21}^*-(Z_{12}^*+Z_{22}^*)H_{12}+(Z_{12}+Z_{22})H_{22}^* N2=(Z11+Z21)H11+(Z11+Z21)H21(Z12+Z22)H12+(Z12+Z22)H22
4、 N 1 N_1 N1 N 2 N_2 N2为高斯白噪声,功率为 σ n 2 = σ n 1 2 = σ n 2 2 = ( σ 11 2 + σ 21 2 ) ( ∣ H 11 ∣ 2 ‾ + ∣ H 21 ∣ 2 ‾ ) + ( σ 12 2 + σ 22 2 ) ( ∣ H 12 ∣ 2 ‾ + ∣ H 22 ∣ 2 ‾ ) \sigma_n^2=\sigma_{n1}^2=\sigma_{n2}^2=(\sigma_{11}^2+\sigma_{21}^2)(\overline{|H_{11}|^2}+\overline{|H_{21}|^2})+(\sigma_{12}^2+\sigma_{22}^2)(\overline{|H_{12}|^2}+\overline{|H_{22}|^2}) σn2=σn12=σn22=(σ112+σ212)(H112+H212)+(σ122+σ222)(H122+H222)

( ⋅ ) ‾ \overline{(\cdot)} ()表示均值

5、MMSE均衡
W = K ∗ K 2 + σ n 2 = ( ∑ i , j ∣ H i j ∣ 2 ) ∗ ( ∑ i , j ∣ H i j ∣ 2 ) 2 + ( σ 11 2 + σ 21 2 ) ( ∣ H 11 ∣ 2 ‾ + ∣ H 21 ∣ 2 ‾ ) + ( σ 12 2 + σ 22 2 ) ( ∣ H 12 ∣ 2 ‾ + ∣ H 22 ∣ 2 ‾ ) W=\frac{K^*}{K^2+\sigma_n^2}=\frac{(\sum\limits_{i,j}|H_{ij}|^2)^*}{(\sum\limits_{i,j}|H_{ij}|^2)^2+(\sigma_{11}^2+\sigma_{21}^2)(\overline{|H_{11}|^2}+\overline{|H_{21}|^2})+(\sigma_{12}^2+\sigma_{22}^2)(\overline{|H_{12}|^2}+\overline{|H_{22}|^2})} W=K2+σn2K=(i,jHij2)2+(σ112+σ212)(H112+H212)+(σ122+σ222)(H122+H222)(i,jHij2)

W W W即为均衡系数

微信公众号:通信随笔XIDIAN

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xidian_hxc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值