- 本文来源于同门(Jw Lou)总结
- 主要参考文献:MIMO系统中空时译码与频域均衡研究与实现
主要流程介绍(一组数据块示例【即两个OFDM数据块】)
1、四个SISO分析
Y
11
=
[
X
1
H
11
,
−
X
2
∗
H
11
]
+
Z
11
Y_{11}=[X_1H_{11},-X^*_2H_{11}]+Z_{11}
Y11=[X1H11,−X2∗H11]+Z11
Y
12
=
[
X
1
H
12
,
−
X
2
∗
H
12
]
+
Z
12
Y_{12}=[X_1H_{12},-X^*_2H_{12}]+Z_{12}
Y12=[X1H12,−X2∗H12]+Z12
Y
21
=
[
X
2
H
21
,
X
1
∗
H
21
]
+
Z
21
Y_{21}=[X_2H_{21},X^*_1H_{21}]+Z_{21}
Y21=[X2H21,X1∗H21]+Z21
Y
22
=
[
X
2
H
22
,
X
1
∗
H
22
]
+
Z
22
Y_{22}=[X_2H_{22},X^*_1H_{22}]+Z_{22}
Y22=[X2H22,X1∗H22]+Z22
1、 Y i j Y_{ij} Yij表示发射天线 i i i至接收天线 j j j的信号(两个相关时隙);
2、 X i X_i Xi为发送信号(频域)【未STBC编码之前】;
3、 H i j H_{ij} Hij表示发射天线 i i i至接收天线 j j j之间的多径信道频域矩阵;
4、 Z i j Z_{ij} Zij表示发射天线 i i i至接收天线 j j j之间的高斯白噪声,功率为 σ i j 2 \sigma_{ij}^2 σij2;
5、 ( ⋅ ) ∗ (\cdot)^* (⋅)∗表示共轭。
2、MISO接收信号
R
1
=
Y
11
+
Y
21
=
[
X
1
H
11
+
X
2
H
21
,
−
X
2
∗
H
11
+
X
1
∗
H
21
]
+
Z
11
+
Z
21
R_1=Y_{11}+Y_{21}=[X_1H_{11}+X_2H_{21},-X_2^*H_{11}+X_1^*H_{21}]+Z_{11}+Z_{21}
R1=Y11+Y21=[X1H11+X2H21,−X2∗H11+X1∗H21]+Z11+Z21
R
2
=
Y
12
+
Y
22
=
[
X
1
H
12
+
X
2
H
22
,
−
X
2
∗
H
12
+
X
1
∗
H
22
]
+
Z
12
+
Z
22
R_2=Y_{12}+Y_{22}=[X_1H_{12}+X_2H_{22},-X_2^*H_{12}+X_1^*H_{22}]+Z_{12}+Z_{22}
R2=Y12+Y22=[X1H12+X2H22,−X2∗H12+X1∗H22]+Z12+Z22
R i R_i Ri表示第 i i i个接收天线接收到的信号
3、MISO分时隙表示
R
11
=
X
1
H
11
+
X
2
H
21
+
Z
11
+
Z
21
R_{11}=X_1H_{11}+X_2H_{21}+Z_{11}+Z_{21}
R11=X1H11+X2H21+Z11+Z21
R
12
=
−
X
2
∗
H
11
+
X
1
∗
H
21
+
Z
11
+
Z
21
R_{12}=-X_2^*H_{11}+X_1^*H_{21}+Z_{11}+Z_{21}
R12=−X2∗H11+X1∗H21+Z11+Z21
R
21
=
X
1
H
12
+
X
2
H
22
+
Z
12
+
Z
22
R_{21}=X_1H_{12}+X_2H_{22}+Z_{12}+Z_{22}
R21=X1H12+X2H22+Z12+Z22
R
22
=
−
X
2
∗
H
12
+
X
1
∗
H
22
+
Z
12
+
Z
22
R_{22}=-X_2^*H_{12}+X_1^*H_{22}+Z_{12}+Z_{22}
R22=−X2∗H12+X1∗H22+Z12+Z22
R i j R_{ij} Rij表示第 i i i个天线的第 j j j个时隙的接收信号。
4、MIMO-STBC解码
S 1 = R 11 H 11 ∗ + R 12 ∗ H 21 + R 21 H 12 ∗ + R 22 ∗ H 22 S_1=R_{11}H_{11}^*+R_{12}^*H_{21}+R_{21}H_{12}^*+R_{22}^*H_{22} S1=R11H11∗+R12∗H21+R21H12∗+R22∗H22
S 2 = R 11 H 21 ∗ − R 12 ∗ H 11 + R 21 H 22 ∗ − R 22 ∗ H 12 S_2=R_{11}H_{21}^*-R_{12}^*H_{11}+R_{21}H_{22}^*-R_{22}^*H_{12} S2=R11H21∗−R12∗H11+R21H22∗−R22∗H12
S i S_i Si表示解调得到的发射信号 X i X_i Xi
-
进一步可以表示为:
S 1 = X 1 ∑ i , j ∣ H i j ∣ 2 + ( Z 11 + Z 21 ) H 11 + ( Z 11 ∗ + Z 21 ∗ ) H 21 + ( Z 12 + Z 22 ) H 12 + ( Z 12 ∗ + Z 22 ∗ ) H 22 S_1=X_1\sum\limits_{i,j}|H_{ij}|^2+(Z_{11}+Z_{21})H_{11}+(Z_{11}^*+Z_{21}^*)H_{21}+(Z_{12}+Z_{22})H_{12}+(Z_{12}^*+Z_{22}^*)H_{22} S1=X1i,j∑∣Hij∣2+(Z11+Z21)H11+(Z11∗+Z21∗)H21+(Z12+Z22)H12+(Z12∗+Z22∗)H22
S 2 = X 2 ∑ i , j ∣ H i j ∣ 2 − ( Z 11 ∗ + Z 21 ∗ ) H 11 + ( Z 11 + Z 21 ) H 21 ∗ − ( Z 12 ∗ + Z 22 ∗ ) H 12 + ( Z 12 + Z 22 ) H 22 ∗ S_2=X_2\sum\limits_{i,j}|H_{ij}|^2-(Z_{11}^*+Z_{21}^*)H_{11}+(Z_{11}+Z_{21})H_{21}^*-(Z_{12}^*+Z_{22}^*)H_{12}+(Z_{12}+Z_{22})H_{22}^* S2=X2i,j∑∣Hij∣2−(Z11∗+Z21∗)H11+(Z11+Z21)H21∗−(Z12∗+Z22∗)H12+(Z12+Z22)H22∗ -
进一步化简:
S
1
=
K
X
1
+
N
1
S_1=KX_1+N_1
S1=KX1+N1
S
2
=
K
X
2
+
N
2
S_2=KX_2+N_2
S2=KX2+N2
1、 K = ∑ i , j ∣ H i j ∣ 2 K=\sum\limits_{i,j}|H_{ij}|^2 K=i,j∑∣Hij∣2;
2、 N 1 = ( Z 11 + Z 21 ) H 11 + ( Z 11 ∗ + Z 21 ∗ ) H 21 + ( Z 12 + Z 22 ) H 12 + ( Z 12 ∗ + Z 22 ∗ ) H 22 N_1=(Z_{11}+Z_{21})H_{11}+(Z_{11}^*+Z_{21}^*)H_{21}+(Z_{12}+Z_{22})H_{12}+(Z_{12}^*+Z_{22}^*)H_{22} N1=(Z11+Z21)H11+(Z11∗+Z21∗)H21+(Z12+Z22)H12+(Z12∗+Z22∗)H22
3、 N 2 = − ( Z 11 ∗ + Z 21 ∗ ) H 11 + ( Z 11 + Z 21 ) H 21 ∗ − ( Z 12 ∗ + Z 22 ∗ ) H 12 + ( Z 12 + Z 22 ) H 22 ∗ N_2=-(Z_{11}^*+Z_{21}^*)H_{11}+(Z_{11}+Z_{21})H_{21}^*-(Z_{12}^*+Z_{22}^*)H_{12}+(Z_{12}+Z_{22})H_{22}^* N2=−(Z11∗+Z21∗)H11+(Z11+Z21)H21∗−(Z12∗+Z22∗)H12+(Z12+Z22)H22∗
4、 N 1 N_1 N1与 N 2 N_2 N2为高斯白噪声,功率为 σ n 2 = σ n 1 2 = σ n 2 2 = ( σ 11 2 + σ 21 2 ) ( ∣ H 11 ∣ 2 ‾ + ∣ H 21 ∣ 2 ‾ ) + ( σ 12 2 + σ 22 2 ) ( ∣ H 12 ∣ 2 ‾ + ∣ H 22 ∣ 2 ‾ ) \sigma_n^2=\sigma_{n1}^2=\sigma_{n2}^2=(\sigma_{11}^2+\sigma_{21}^2)(\overline{|H_{11}|^2}+\overline{|H_{21}|^2})+(\sigma_{12}^2+\sigma_{22}^2)(\overline{|H_{12}|^2}+\overline{|H_{22}|^2}) σn2=σn12=σn22=(σ112+σ212)(∣H11∣2+∣H21∣2)+(σ122+σ222)(∣H12∣2+∣H22∣2)( ⋅ ) ‾ \overline{(\cdot)} (⋅)表示均值
5、MMSE均衡
W
=
K
∗
K
2
+
σ
n
2
=
(
∑
i
,
j
∣
H
i
j
∣
2
)
∗
(
∑
i
,
j
∣
H
i
j
∣
2
)
2
+
(
σ
11
2
+
σ
21
2
)
(
∣
H
11
∣
2
‾
+
∣
H
21
∣
2
‾
)
+
(
σ
12
2
+
σ
22
2
)
(
∣
H
12
∣
2
‾
+
∣
H
22
∣
2
‾
)
W=\frac{K^*}{K^2+\sigma_n^2}=\frac{(\sum\limits_{i,j}|H_{ij}|^2)^*}{(\sum\limits_{i,j}|H_{ij}|^2)^2+(\sigma_{11}^2+\sigma_{21}^2)(\overline{|H_{11}|^2}+\overline{|H_{21}|^2})+(\sigma_{12}^2+\sigma_{22}^2)(\overline{|H_{12}|^2}+\overline{|H_{22}|^2})}
W=K2+σn2K∗=(i,j∑∣Hij∣2)2+(σ112+σ212)(∣H11∣2+∣H21∣2)+(σ122+σ222)(∣H12∣2+∣H22∣2)(i,j∑∣Hij∣2)∗
W W W即为均衡系数