caffe训练和测试图像(windows下)-问题:data_transformer.cpp:63---check failed

本文详细介绍了如何使用Caffe深度学习框架进行自定义图片的训练和测试,包括生成lmdb格式数据集、计算图片均值、修改网络模型及配置文件等步骤,并解决了训练过程中遇到的内存不足等问题。

参考博客:caffe windows训练测试自己的图片 https://www.jianshu.com/p/607f1e51e3ab

                   Caffe学习系列(12):训练和测试自己的图片 https://www.cnblogs.com/denny402/p/5083300.html

1、生成lmdb格式的数据
    (1)原始.jpg图像,可自行搜索下载(或者我上传了图片https://download.youkuaiyun.com/download/xiaoyucyt/12284404可以下载),在caffe-master/data路径下新建文件夹my,将test和train两个图片文件夹放在my文件夹下(这里caffe-master为caffe的根目录)。

     (2)转换为lmdb格式:在my目录下新建文件列表清单trainlist.txt和testlist.txt,内容即图片名和对应的标签号:

                                                                           

     (3)在根目录caffe-master下新建批处理文件convert_image.bat,分别转换训练图片和测试图片:

.\Build\x64\Release\convert_imageset.exe --resize_height=256 --resize_width=256 --backend=lmdb  .\data\my\  .\data\my\trainlist.txt .\data\my\img_train_lmdb
pause
.\Build\x64\Release\convert_imageset.exe --resize_height=256 --resize_width=256 --backend=lmdb  .\data\my\  .\data\my\testlist.txt .\data\my\img_test_lmdb
pause

 

     (4)双击运行该批处理文件,在my文件夹下会生成对应的db文件:

                                                                     

2、计算图片均值

图片减去均值再训练,会提高训练速度和精度,一般都会有这个操作。计算图片均值使用的是前一步生成的训练数据的lmdb。

在根目录caffe-master下新建批处理文件convert_mean.bat:

会在当前目录下生成mean.binaryproto文件,拷贝到my文件夹下。

3、修改网络模型和配置文件:

这里拷贝了models\bvlc_reference_caffenet\solver.prototxt文件和train_val.prototxt文件到my文件夹下,并修改(test_iter、test_batchsize和数据来源路径,因为图像数据量发生了改变。并在fc8这个layer处也要修改下,将1000改为5,因为我们这里只有5个类别):

4、训练和测试

在caffe-master路径下新建Train.bat:

双击运行,出现问题:

这个该如何解决?

 

重新试了一次:

另外的错误:

Check failed: error==cudaSuccess(2 vs. 0) out of memory

解法方法:将train_val.prototxt文件里train的batch_size由256改为和test一样的50就可以训练了。(batch_size太大了,一次性读入的图片太多了,所以就超出了显存。)


“tmpxft_000061d4_00000000-7_cutlassB_f32_aligned_k65536_dropout.cudafe1.cpp [4835/7459] Building CXX object caffe2\CMakeFiles\torch_cuda.dir\__\torch\csrc\jit\tensorexpr\cuda_codegen.cpp.obj E:\PyTorch_Build\pytorch\torch/csrc/jit/tensorexpr/ir.h(395): warning C4805: “==”: 在操作中将类型“c10::impl::ScalarTypeToCPPType<c10::ScalarType::Bool>::type”与类型“T”混合不安全 with [ T=int ] E:\PyTorch_Build\pytorch\torch/csrc/jit/tensorexpr/ir.h(395): note: 模板实例化上下文(最早的实例化上下文)为 E:\PyTorch_Build\pytorch\torch\csrc\jit\tensorexpr\cuda_codegen.cpp(147): note: 查看对正在编译的函数 模板 实例化“bool torch::jit::tensorexpr::immediateEquals<int>(const torch::jit::tensorexpr::ExprPtr &,T)”的引用 with [ T=int ] [4844/7459] Building CUDA object caffe2\CMakeFiles\torch_c...aten\src\ATen\native\quantized\cuda\FakeQuantizeCore.cu.ob FakeQuantizeCore.cu tmpxft_000011c8_00000000-7_FakeQuantizeCore.cudafe1.cpp [4850/7459] Building CUDA object caffe2\CMakeFiles\torch_c...aten\src\ATen\native\sparse\cuda\SparseCsrTensorMath.cu.ob SparseCsrTensorMath.cu tmpxft_00000e1c_00000000-7_SparseCsrTensorMath.cudafe1.cpp [4854/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\StorageMethods.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/StorageMethods.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\StorageMethods.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\StorageMethods.cpp E:\PyTorch_Build\pytorch\torch\csrc\StorageMethods.cpp(9): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4855/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\Storage.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/Storage.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\Storage.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\Storage.cpp E:\PyTorch_Build\pytorch\torch\csrc\Storage.cpp(10): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4856/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\Module.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/Module.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\Module.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\Module.cpp E:\PyTorch_Build\pytorch\torch\csrc\Module.cpp(34): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4872/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\native\cuda\group_norm_kernel.cu.obj group_norm_kernel.cu tmpxft_00005adc_00000000-7_group_norm_kernel.cudafe1.cpp [4873/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\UfuncCUDA_add.cu.obj UfuncCUDA_add.cu tmpxft_00006bdc_00000000-7_UfuncCUDA_add.cudafe1.cpp [4875/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\native\cuda\Unique.cu.obj Unique.cu tmpxft_00000658_00000000-7_Unique.cudafe1.cpp ninja: build stopped: subcommand failed. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch>” “PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env Error: [Errno 13] Permission denied: 'E:\\PyTorch_Build\\pytorch\\rtx5070_env\\Scripts\\python.exe' PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\activate (rtx5070_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge openblas 3 channel Terms of Service accepted Retrieving notices: done Channels: - conda-forge - defaults - nvidia - pytorch-nightly Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done ## Package Plan ## environment location: C:\Miniconda3 added / updated specs: - openblas The following packages will be downloaded: package | build ---------------------------|----------------- libopenblas-0.3.30 |pthreads_ha4fe6b2_2 3.8 MB conda-forge openblas-0.3.30 |pthreads_h4a7f399_2 262 KB conda-forge ------------------------------------------------------------ Total: 4.0 MB The following NEW packages will be INSTALLED: libopenblas conda-forge/win-64::libopenblas-0.3.30-pthreads_ha4fe6b2_2 openblas conda-forge/win-64::openblas-0.3.30-pthreads_h4a7f399_2 Proceed ([y]/n)? y Downloading and Extracting Packages: Preparing transaction: done Verifying transaction: done Executing transaction: done (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置cuDNN路径 (rtx5070_env) PS E:\PyTorch_Build\pytorch> @" >> set(CUDNN_INCLUDE_DIR "E:/Program Files/NVIDIA/CUNND/v9.12/include/13.0") >> set(CUDNN_LIBRARY "E:/Program Files/NVIDIA/CUNND/v9.12/lib/13.0/x64/cudnn64_9.lib") >> message(STATUS "Applied custom cuDNN settings") >> "@ | Set-Content set_cudnn.cmake (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 在CMakeLists.txt第一行插入引用 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $cmakeFile = "CMakeLists.txt" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $content = Get-Content $cmakeFile (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent = @() (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent += "include(set_cudnn.cmake)" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent += $content (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent | Set-Content $cmakeFile (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装OpenBLAS (rtx5070_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge openblas -y 3 channel Terms of Service accepted Channels: - conda-forge - defaults - nvidia - pytorch-nightly Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done # All requested packages already installed. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> Write-Host "✅ 构建环境优化完成" -ForegroundColor Green ✅ 构建环境优化完成 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 检查GPU支持状态 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python -c "import torch; print(f'CUDA可用: {torch.cuda.is_available()}')" Traceback (most recent call last): File "<string>", line 1, in <module> File "E:\PyTorch_Build\pytorch\torch\__init__.py", line 415, in <module> from torch._C import * # noqa: F403 ImportError: DLL load failed while importing _C: 找不到指定的模块。 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 查看已完成任务比例 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $total = 7459 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $completed = (Get-ChildItem build -Recurse -File | Measure-Object).Count (rtx5070_env) PS E:\PyTorch_Build\pytorch> $percent = [math]::Round(($completed/$total)*100, 2) (rtx5070_env) PS E:\PyTorch_Build\pytorch> Write-Host "构建进度: $completed/$total ($percent%)" 构建进度: 12552/7459 (168.28%) (rtx5070_env) PS E:\PyTorch_Build\pytorch>”
最新发布
09-04
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值