hdu4608:I-number

本文详细介绍了解决HDU 4608问题的算法思路和实现过程,包括如何利用字符串操作和数学逻辑来优化算法性能,确保在限定时间内获得正确答案。特别关注于细节处理,如边界条件判断和状态转移,以提高解决方案的通用性和效率。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4608


参考思路:用字符串sx来存放整数x,sx的长度为length(构造出来的y最后存放在修改后的sx里面):

                   (1)length为1,直接令sx等于10;

                   (2)length大于1:

                              (21)如果通过修改第len-1位可以得到y,则直接修改得到y;

                              (22)从len-2往前扫描,假设扫描到了k,如果sx[k]为‘9’,令sx[k]为‘0’,继续扫描;如果k等于-1了,即sx从0到len-2位都为‘9’,则y的值为1....9,省略号代表len-1个0;否则修改sx[k] = sx[k]  + 1,修改sx[len-1]的值,返回。


源代码:

### HDU 1466 Problem Description and Solution The problem **HDU 1466** involves calculating the expected number of steps to reach a certain state under specific conditions. The key elements include: #### Problem Statement Given an interactive scenario where operations are performed on numbers modulo \(998244353\), one must determine the expected number of steps required to achieve a particular outcome. For this type of problem, dynamic programming (DP) is often employed as it allows breaking down complex problems into simpler subproblems that can be solved iteratively or recursively with memoization techniques[^1]. In more detail, consider the constraints provided by similar problems such as those found in references like HDU 6327 which deals with random sequences using DP within given bounds \((1 \leq T \leq 10, 4 \leq n \leq 100)\)[^2]. These types of constraints suggest iterative approaches over small ranges might work efficiently here too. Additionally, when dealing with large inputs up to \(2 \times 10^7\) as seen in reference materials related to counting algorithms [^4], efficient data structures and optimization strategies become crucial for performance reasons. However, directly applying these methods requires understanding how they fit specifically into solving the expectation value calculation involved in HDU 1466. For instance, if each step has multiple outcomes weighted differently based on probabilities, then summing products of probability times cost across all possible states until convergence gives us our answer. To implement this approach effectively: ```python MOD = 998244353 def solve_expectation(n): dp = [0] * (n + 1) # Base case initialization depending upon problem specifics for i in range(1, n + 1): total_prob = 0 # Calculate transition probabilities from previous states for j in transitions_from(i): # Placeholder function representing valid moves prob = calculate_probability(j) next_state_cost = get_next_state_cost(j) dp[i] += prob * (next_state_cost + dp[j]) % MOD total_prob += prob dp[i] %= MOD # Normalize current state's expectation due to accumulated probability mass if total_prob != 0: dp[i] *= pow(total_prob, MOD - 2, MOD) dp[i] %= MOD return dp[n] # Example usage would depend heavily on exact rules governing transitions between states. ``` This code snippet outlines a generic framework tailored towards computing expectations via dynamic programming while adhering strictly to modular arithmetic requirements specified by the contest question format.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值